走向基于架构的自我修复系统

Eric M. Dashofy, A. Hoek, R. Taylor
{"title":"走向基于架构的自我修复系统","authors":"Eric M. Dashofy, A. Hoek, R. Taylor","doi":"10.1145/582128.582133","DOIUrl":null,"url":null,"abstract":"Our approach to creating self-healing systems is based on software architecture, where repairs are done at the level of a software system's components and connectors. In our approach, event-based software architectures are targeted because they offer significant benefits for run-time adaptation. Before an automated planning agent can decide how to repair a self-healing system, a significant infrastructure must be in place to support making the planned repair. Specifically, the self-healing system must be built using a framework that allows for run-time adaptation, there must be a language in which to express the repair plan, and there must be a reconfiguration agent that can execute the repair plan once it is created. In this paper, we present tools and methods that implement these infrastructure elements in the context of an overall architecture-based vision for building self-healing systems. The paper concludes with a gap analysis of our current infrastructure vs. the overall vision, and our plans for fulfilling that vision.","PeriodicalId":326554,"journal":{"name":"Workshop on Self-Healing Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"237","resultStr":"{\"title\":\"Towards architecture-based self-healing systems\",\"authors\":\"Eric M. Dashofy, A. Hoek, R. Taylor\",\"doi\":\"10.1145/582128.582133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our approach to creating self-healing systems is based on software architecture, where repairs are done at the level of a software system's components and connectors. In our approach, event-based software architectures are targeted because they offer significant benefits for run-time adaptation. Before an automated planning agent can decide how to repair a self-healing system, a significant infrastructure must be in place to support making the planned repair. Specifically, the self-healing system must be built using a framework that allows for run-time adaptation, there must be a language in which to express the repair plan, and there must be a reconfiguration agent that can execute the repair plan once it is created. In this paper, we present tools and methods that implement these infrastructure elements in the context of an overall architecture-based vision for building self-healing systems. The paper concludes with a gap analysis of our current infrastructure vs. the overall vision, and our plans for fulfilling that vision.\",\"PeriodicalId\":326554,\"journal\":{\"name\":\"Workshop on Self-Healing Systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"237\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Self-Healing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/582128.582133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Self-Healing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/582128.582133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 237

摘要

我们创建自修复系统的方法是基于软件架构的,其中修复是在软件系统的组件和连接器级别上完成的。在我们的方法中,基于事件的软件架构是目标,因为它们为运行时适应提供了显著的好处。在自动规划代理决定如何修复自我修复系统之前,必须有一个重要的基础设施来支持进行计划修复。具体来说,自我修复系统必须使用允许运行时适应的框架来构建,必须有一种语言来表达修复计划,并且必须有一个重新配置代理,可以在修复计划创建后执行修复计划。在本文中,我们展示了在构建自修复系统的基于整体架构的愿景的上下文中实现这些基础设施元素的工具和方法。本文最后对我们当前的基础设施与总体愿景,以及我们实现该愿景的计划进行了差距分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards architecture-based self-healing systems
Our approach to creating self-healing systems is based on software architecture, where repairs are done at the level of a software system's components and connectors. In our approach, event-based software architectures are targeted because they offer significant benefits for run-time adaptation. Before an automated planning agent can decide how to repair a self-healing system, a significant infrastructure must be in place to support making the planned repair. Specifically, the self-healing system must be built using a framework that allows for run-time adaptation, there must be a language in which to express the repair plan, and there must be a reconfiguration agent that can execute the repair plan once it is created. In this paper, we present tools and methods that implement these infrastructure elements in the context of an overall architecture-based vision for building self-healing systems. The paper concludes with a gap analysis of our current infrastructure vs. the overall vision, and our plans for fulfilling that vision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信