能量收集传感器网络的永久数据收集

C. Renner, Stefan Unterschütz, V. Turau, K. Römer
{"title":"能量收集传感器网络的永久数据收集","authors":"C. Renner, Stefan Unterschütz, V. Turau, K. Römer","doi":"10.1145/2566675","DOIUrl":null,"url":null,"abstract":"A sustainable, uniform, and utility-maximizing operation of energy-harvesting sensor networks requires methods for aligning consumption with harvest. This article presents a lightweight algorithm for online load adaptation of energy-harvesting sensor nodes using supercapacitors as energy buffers. The algorithm capitalizes on the elementary relationship between state of charge and voltage that is characteristic for supercapacitors. It is particularly designed to handle the nonlinear system model, and it is lightweight enough to run on low-power sensor node hardware. We define two energy policies, evaluate their performance using real-world solar-harvesting traces, and analyze the influence of the supercapacitor’s capacity and imprecisions in harvest forecasts. To show the practical merit of our algorithm, we devise a load adaptation scheme for multihop data collection sensor networks and run a 4-week field test. The results show that (i) choosing a duty cycle a priori is infeasible, (ii) our algorithm increases the achievable work load of a node when using forecasts, (iii) uniform and steady operation is achieved, and (iv) depletion can be prevented in most cases.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Perpetual Data Collection with Energy-Harvesting Sensor Networks\",\"authors\":\"C. Renner, Stefan Unterschütz, V. Turau, K. Römer\",\"doi\":\"10.1145/2566675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sustainable, uniform, and utility-maximizing operation of energy-harvesting sensor networks requires methods for aligning consumption with harvest. This article presents a lightweight algorithm for online load adaptation of energy-harvesting sensor nodes using supercapacitors as energy buffers. The algorithm capitalizes on the elementary relationship between state of charge and voltage that is characteristic for supercapacitors. It is particularly designed to handle the nonlinear system model, and it is lightweight enough to run on low-power sensor node hardware. We define two energy policies, evaluate their performance using real-world solar-harvesting traces, and analyze the influence of the supercapacitor’s capacity and imprecisions in harvest forecasts. To show the practical merit of our algorithm, we devise a load adaptation scheme for multihop data collection sensor networks and run a 4-week field test. The results show that (i) choosing a duty cycle a priori is infeasible, (ii) our algorithm increases the achievable work load of a node when using forecasts, (iii) uniform and steady operation is achieved, and (iv) depletion can be prevented in most cases.\",\"PeriodicalId\":263540,\"journal\":{\"name\":\"ACM Trans. Sens. Networks\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Sens. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2566675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Sens. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2566675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

能源收集传感器网络的可持续、统一和效用最大化操作需要将消耗与收获相匹配的方法。本文提出了一种利用超级电容器作为能量缓冲器的能量收集传感器节点在线负载自适应的轻量级算法。该算法利用了超级电容器的特性——电荷状态与电压之间的基本关系。它特别设计用于处理非线性系统模型,并且足够轻量,可以在低功耗传感器节点硬件上运行。我们定义了两种能源策略,使用现实世界的太阳能收集轨迹评估它们的性能,并分析了超级电容器的容量和收获预测的不精确性的影响。为了证明该算法的实用价值,我们设计了一种多跳数据采集传感器网络的负载自适应方案,并进行了为期4周的现场测试。结果表明:(i)先验选择占空比是不可行的,(ii)我们的算法在使用预测时增加了节点的可实现工作负载,(iii)实现了均匀稳定的运行,(iv)在大多数情况下可以防止耗尽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perpetual Data Collection with Energy-Harvesting Sensor Networks
A sustainable, uniform, and utility-maximizing operation of energy-harvesting sensor networks requires methods for aligning consumption with harvest. This article presents a lightweight algorithm for online load adaptation of energy-harvesting sensor nodes using supercapacitors as energy buffers. The algorithm capitalizes on the elementary relationship between state of charge and voltage that is characteristic for supercapacitors. It is particularly designed to handle the nonlinear system model, and it is lightweight enough to run on low-power sensor node hardware. We define two energy policies, evaluate their performance using real-world solar-harvesting traces, and analyze the influence of the supercapacitor’s capacity and imprecisions in harvest forecasts. To show the practical merit of our algorithm, we devise a load adaptation scheme for multihop data collection sensor networks and run a 4-week field test. The results show that (i) choosing a duty cycle a priori is infeasible, (ii) our algorithm increases the achievable work load of a node when using forecasts, (iii) uniform and steady operation is achieved, and (iv) depletion can be prevented in most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信