基于视觉的实时游戏界面

Youngjoon Chai, DongHeon Jang, Kyusik Chang, Taeyong Kim
{"title":"基于视觉的实时游戏界面","authors":"Youngjoon Chai, DongHeon Jang, Kyusik Chang, Taeyong Kim","doi":"10.1109/ICEGIC.2009.5293605","DOIUrl":null,"url":null,"abstract":"In this paper, we will introduce a fast and robust method of constituting a probability map by extracting foreground object from background image which is basic technology to be applied to vision-based real-time game interaction. We implement a neural network with one hidden layer to recognize a motion of the probability map. In this process, we extract the foreground probability map which is robust against change of illumination using local binary pattern and improve the speed using integral histogram. Also, we use a novel Gaussian window frame mask which can be applied fast in the integral histogram process and reduce noise by adaptive Gaussian sigma value depending on the strength of edge. In the following, experiments are carried out and satisfactory results are obtained which indicate the fast and robust conditions.","PeriodicalId":328281,"journal":{"name":"2009 International IEEE Consumer Electronics Society's Games Innovations Conference","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Vision-based real-time game interface\",\"authors\":\"Youngjoon Chai, DongHeon Jang, Kyusik Chang, Taeyong Kim\",\"doi\":\"10.1109/ICEGIC.2009.5293605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will introduce a fast and robust method of constituting a probability map by extracting foreground object from background image which is basic technology to be applied to vision-based real-time game interaction. We implement a neural network with one hidden layer to recognize a motion of the probability map. In this process, we extract the foreground probability map which is robust against change of illumination using local binary pattern and improve the speed using integral histogram. Also, we use a novel Gaussian window frame mask which can be applied fast in the integral histogram process and reduce noise by adaptive Gaussian sigma value depending on the strength of edge. In the following, experiments are carried out and satisfactory results are obtained which indicate the fast and robust conditions.\",\"PeriodicalId\":328281,\"journal\":{\"name\":\"2009 International IEEE Consumer Electronics Society's Games Innovations Conference\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International IEEE Consumer Electronics Society's Games Innovations Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEGIC.2009.5293605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International IEEE Consumer Electronics Society's Games Innovations Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEGIC.2009.5293605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文将介绍一种快速、鲁棒的从背景图像中提取前景目标来构建概率图的方法,这是应用于基于视觉的实时游戏交互的基础技术。我们实现了一个带有一个隐藏层的神经网络来识别概率图的运动。在此过程中,我们采用局部二值模式提取对光照变化具有鲁棒性的前景概率图,并采用积分直方图提高提取速度。此外,我们还使用了一种新的高斯窗框掩模,该掩模可以快速应用于积分直方图处理,并根据边缘的强度自适应高斯σ值来降低噪声。在接下来的实验中,得到了令人满意的结果,表明了快速和鲁棒的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision-based real-time game interface
In this paper, we will introduce a fast and robust method of constituting a probability map by extracting foreground object from background image which is basic technology to be applied to vision-based real-time game interaction. We implement a neural network with one hidden layer to recognize a motion of the probability map. In this process, we extract the foreground probability map which is robust against change of illumination using local binary pattern and improve the speed using integral histogram. Also, we use a novel Gaussian window frame mask which can be applied fast in the integral histogram process and reduce noise by adaptive Gaussian sigma value depending on the strength of edge. In the following, experiments are carried out and satisfactory results are obtained which indicate the fast and robust conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信