{"title":"具有杏仁核的KIV在模拟导航控制中的相变分析","authors":"R. Kozma, M. Myers","doi":"10.1109/IJCNN.2005.1555817","DOIUrl":null,"url":null,"abstract":"A biologically inspired dynamical neural network model called KIV is used in this work to design autonomous agents. The KIV set models the vertebrate limbic system. Previous studies indicated that KIV is able to provide a control algorithm for navigation and decision-making for autonomous mobile agents. In this work we use Hilbert transform to capture global synchronized spatio-temporal patterns of amplitude modulation in KIV. We identify phase transition in the simulated amygdala and show that it shares several important features of EEC signals.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Analysis of phase transitions in KIV with amygdala during simulated navigation control\",\"authors\":\"R. Kozma, M. Myers\",\"doi\":\"10.1109/IJCNN.2005.1555817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A biologically inspired dynamical neural network model called KIV is used in this work to design autonomous agents. The KIV set models the vertebrate limbic system. Previous studies indicated that KIV is able to provide a control algorithm for navigation and decision-making for autonomous mobile agents. In this work we use Hilbert transform to capture global synchronized spatio-temporal patterns of amplitude modulation in KIV. We identify phase transition in the simulated amygdala and show that it shares several important features of EEC signals.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1555817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of phase transitions in KIV with amygdala during simulated navigation control
A biologically inspired dynamical neural network model called KIV is used in this work to design autonomous agents. The KIV set models the vertebrate limbic system. Previous studies indicated that KIV is able to provide a control algorithm for navigation and decision-making for autonomous mobile agents. In this work we use Hilbert transform to capture global synchronized spatio-temporal patterns of amplitude modulation in KIV. We identify phase transition in the simulated amygdala and show that it shares several important features of EEC signals.