{"title":"男性和女性面部吸引力预测:使用基于卷积神经网络的模型的基于图像的方法","authors":"Takanori Sano","doi":"10.5821/conference-9788419184849.50","DOIUrl":null,"url":null,"abstract":"In recent years, significant research has been conducted on the use of deep learning for prediction of facial attractiveness. These studies are expected to have various applications such as recommendation systems and face beautification. Therefore, it is crucial to improve the prediction accuracy. In this study, to improve the accuracy of facial attractiveness prediction, several convolutional neural network-based models were built using sex-specific datasets. Then, their accuracies were compared. The results showed that VGG19 and VGG16 had the highest accuracies for the male and female face datasets, respectively. A detailed confirmation of the factors necessary for prediction is expected to contribute to the construction of models based on human perceptual characteristics. These models maybe utilized in various engineering applications.","PeriodicalId":433529,"journal":{"name":"9th International Conference on Kansei Engineering and Emotion Research. KEER2022. Proceedings","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Male and female facial attractiveness prediction: An image-based approach using convolutional neural network-based models\",\"authors\":\"Takanori Sano\",\"doi\":\"10.5821/conference-9788419184849.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, significant research has been conducted on the use of deep learning for prediction of facial attractiveness. These studies are expected to have various applications such as recommendation systems and face beautification. Therefore, it is crucial to improve the prediction accuracy. In this study, to improve the accuracy of facial attractiveness prediction, several convolutional neural network-based models were built using sex-specific datasets. Then, their accuracies were compared. The results showed that VGG19 and VGG16 had the highest accuracies for the male and female face datasets, respectively. A detailed confirmation of the factors necessary for prediction is expected to contribute to the construction of models based on human perceptual characteristics. These models maybe utilized in various engineering applications.\",\"PeriodicalId\":433529,\"journal\":{\"name\":\"9th International Conference on Kansei Engineering and Emotion Research. KEER2022. Proceedings\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Conference on Kansei Engineering and Emotion Research. KEER2022. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5821/conference-9788419184849.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Kansei Engineering and Emotion Research. KEER2022. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5821/conference-9788419184849.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Male and female facial attractiveness prediction: An image-based approach using convolutional neural network-based models
In recent years, significant research has been conducted on the use of deep learning for prediction of facial attractiveness. These studies are expected to have various applications such as recommendation systems and face beautification. Therefore, it is crucial to improve the prediction accuracy. In this study, to improve the accuracy of facial attractiveness prediction, several convolutional neural network-based models were built using sex-specific datasets. Then, their accuracies were compared. The results showed that VGG19 and VGG16 had the highest accuracies for the male and female face datasets, respectively. A detailed confirmation of the factors necessary for prediction is expected to contribute to the construction of models based on human perceptual characteristics. These models maybe utilized in various engineering applications.