精确线性代数算法:理论与实践

Clément Pernet
{"title":"精确线性代数算法:理论与实践","authors":"Clément Pernet","doi":"10.1145/2755996.2756684","DOIUrl":null,"url":null,"abstract":"Exact linear algebra is a core component of many symbolic and algebraic computations, as it often delivers competitive theoretical complexities and also better harnesses the efficiency of modern computing infrastructures. In this tutorial we will present an overview on the recent advances in exact linear algebra algorithmic and implementation techniques, and highlight the few key ideas that have proven successful in their design. As an illustration, we will study in more details the computation of some matrix normal forms over a finite field or the ring of polynomials, specific to computer algebra. In particular, we will give a special care to the design and implementation of parallel exact linear algebra routines, trying to emphasize the similarities and distinctness with parallel numerical linear algebra. We aim to provide the working computer algebraist with a set of best practices for the use or the design of exact linear algebra software, together with an overview on a few still unresolved algorithmic problems in the field.","PeriodicalId":182805,"journal":{"name":"Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exact Linear Algebra Algorithmic: Theory and Practice\",\"authors\":\"Clément Pernet\",\"doi\":\"10.1145/2755996.2756684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exact linear algebra is a core component of many symbolic and algebraic computations, as it often delivers competitive theoretical complexities and also better harnesses the efficiency of modern computing infrastructures. In this tutorial we will present an overview on the recent advances in exact linear algebra algorithmic and implementation techniques, and highlight the few key ideas that have proven successful in their design. As an illustration, we will study in more details the computation of some matrix normal forms over a finite field or the ring of polynomials, specific to computer algebra. In particular, we will give a special care to the design and implementation of parallel exact linear algebra routines, trying to emphasize the similarities and distinctness with parallel numerical linear algebra. We aim to provide the working computer algebraist with a set of best practices for the use or the design of exact linear algebra software, together with an overview on a few still unresolved algorithmic problems in the field.\",\"PeriodicalId\":182805,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2755996.2756684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2755996.2756684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

精确线性代数是许多符号和代数计算的核心组件,因为它通常提供具有竞争力的理论复杂性,并且更好地利用现代计算基础设施的效率。在本教程中,我们将概述精确线性代数算法和实现技术的最新进展,并强调在其设计中被证明成功的几个关键思想。作为说明,我们将更详细地研究有限域或多项式环上的一些矩阵范式的计算,具体到计算机代数。特别是,我们将特别关注并行精确线性代数例程的设计和实现,试图强调与并行数值线性代数的相似性和独特性。我们的目标是为计算机代数工作者提供一套使用或设计精确线性代数软件的最佳实践,以及对该领域一些尚未解决的算法问题的概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Linear Algebra Algorithmic: Theory and Practice
Exact linear algebra is a core component of many symbolic and algebraic computations, as it often delivers competitive theoretical complexities and also better harnesses the efficiency of modern computing infrastructures. In this tutorial we will present an overview on the recent advances in exact linear algebra algorithmic and implementation techniques, and highlight the few key ideas that have proven successful in their design. As an illustration, we will study in more details the computation of some matrix normal forms over a finite field or the ring of polynomials, specific to computer algebra. In particular, we will give a special care to the design and implementation of parallel exact linear algebra routines, trying to emphasize the similarities and distinctness with parallel numerical linear algebra. We aim to provide the working computer algebraist with a set of best practices for the use or the design of exact linear algebra software, together with an overview on a few still unresolved algorithmic problems in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信