基于机器学习算法的语音性别识别

Serhat Hizlisoy, E. Çolakoğlu, R. Arslan
{"title":"基于机器学习算法的语音性别识别","authors":"Serhat Hizlisoy, E. Çolakoğlu, R. Arslan","doi":"10.18100/ijamec.1221455","DOIUrl":null,"url":null,"abstract":"Speech recognition has several application areas such as human machine interaction, classification of phone calls by gender, voice tagging, STT, etc. Predicting gender from audio signals is a problem that is easy for humans to solve, difficult to solve by a computer. In this study, a model based on MFCC and classification with machine learning is proposed for gender estimation from Turkish voice signals. Within the scope of the study, 58 different series and films were examined and a new original dataset was created with 894 audio recordings consisting of 5 sec sections taken from them. Mel-frequency cepstral coefficients (MFCC) and spectrogram, which are frequently used in the literature, were used for feature extraction from audio data. The results were first evaluated separately using two features in one way. A hybrid feature vector was then created using two feature vectors. Different machine learning algorithms (LR, DT, RF, XGB etc.) were tested in the classification process and it was seen that the best accuracy was achieved in the hybrid model and logistic regression with 89%. Recall, precision and f-score values were obtained as 86.8%, 92% and 89.3%, respectively. The obtained test results revealed that the proposed model, together with the hybrid feature vector used, the original dataset and the classifier based on machine learning, showed classification success in terms of accuracy and was a stable and robust model.","PeriodicalId":120305,"journal":{"name":"International Journal of Applied Mathematics Electronics and Computers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speech-to-Gender Recognition Based on Machine Learning Algorithms\",\"authors\":\"Serhat Hizlisoy, E. Çolakoğlu, R. Arslan\",\"doi\":\"10.18100/ijamec.1221455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech recognition has several application areas such as human machine interaction, classification of phone calls by gender, voice tagging, STT, etc. Predicting gender from audio signals is a problem that is easy for humans to solve, difficult to solve by a computer. In this study, a model based on MFCC and classification with machine learning is proposed for gender estimation from Turkish voice signals. Within the scope of the study, 58 different series and films were examined and a new original dataset was created with 894 audio recordings consisting of 5 sec sections taken from them. Mel-frequency cepstral coefficients (MFCC) and spectrogram, which are frequently used in the literature, were used for feature extraction from audio data. The results were first evaluated separately using two features in one way. A hybrid feature vector was then created using two feature vectors. Different machine learning algorithms (LR, DT, RF, XGB etc.) were tested in the classification process and it was seen that the best accuracy was achieved in the hybrid model and logistic regression with 89%. Recall, precision and f-score values were obtained as 86.8%, 92% and 89.3%, respectively. The obtained test results revealed that the proposed model, together with the hybrid feature vector used, the original dataset and the classifier based on machine learning, showed classification success in terms of accuracy and was a stable and robust model.\",\"PeriodicalId\":120305,\"journal\":{\"name\":\"International Journal of Applied Mathematics Electronics and Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics Electronics and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18100/ijamec.1221455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics Electronics and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18100/ijamec.1221455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语音识别在人机交互、电话性别分类、语音标注、STT等方面有着广泛的应用。从音频信号中预测性别是一个人类很容易解决的问题,而计算机很难解决。在这项研究中,提出了一个基于MFCC和机器学习分类的模型,用于土耳其语音信号的性别估计。在研究范围内,研究了58个不同的系列和电影,并创建了一个新的原始数据集,其中包含894个音频记录,其中包括取自它们的5秒片段。利用文献中常用的Mel-frequency倒谱系数(MFCC)和谱图对音频数据进行特征提取。结果首先以一种方式分别使用两个特征进行评估。然后使用两个特征向量创建混合特征向量。在分类过程中测试了不同的机器学习算法(LR、DT、RF、XGB等),发现混合模型和逻辑回归的准确率最高,达到89%。查全率为86.8%,查准率为92%,f-score为89.3%。得到的测试结果表明,该模型与所使用的混合特征向量、原始数据集和基于机器学习的分类器在分类精度方面取得了成功,是一个稳定的鲁棒模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech-to-Gender Recognition Based on Machine Learning Algorithms
Speech recognition has several application areas such as human machine interaction, classification of phone calls by gender, voice tagging, STT, etc. Predicting gender from audio signals is a problem that is easy for humans to solve, difficult to solve by a computer. In this study, a model based on MFCC and classification with machine learning is proposed for gender estimation from Turkish voice signals. Within the scope of the study, 58 different series and films were examined and a new original dataset was created with 894 audio recordings consisting of 5 sec sections taken from them. Mel-frequency cepstral coefficients (MFCC) and spectrogram, which are frequently used in the literature, were used for feature extraction from audio data. The results were first evaluated separately using two features in one way. A hybrid feature vector was then created using two feature vectors. Different machine learning algorithms (LR, DT, RF, XGB etc.) were tested in the classification process and it was seen that the best accuracy was achieved in the hybrid model and logistic regression with 89%. Recall, precision and f-score values were obtained as 86.8%, 92% and 89.3%, respectively. The obtained test results revealed that the proposed model, together with the hybrid feature vector used, the original dataset and the classifier based on machine learning, showed classification success in terms of accuracy and was a stable and robust model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信