航天器异常检测的堆叠预测和动态阈值算法

Tianyu Li, M. Comer, E. Delp, Sundip R. Desai, James L. Mathieson, Richard H. Foster, Moses W. Chan
{"title":"航天器异常检测的堆叠预测和动态阈值算法","authors":"Tianyu Li, M. Comer, E. Delp, Sundip R. Desai, James L. Mathieson, Richard H. Foster, Moses W. Chan","doi":"10.1109/MILCOM47813.2019.9021055","DOIUrl":null,"url":null,"abstract":"Anomaly or abnormal behavior detection in downlinked spacecraft telemetry is a key step for determining root cause of subsystem failures. Long Short-Term Memory networks (LSTMs) have been demonstrated to be useful for anomaly detection in time series, due to their predictive power, especially with long sequences that contain contextual information. However, there could be thousands of telemetry channels transmitted from the spacecraft with diverse signal characteristics. A single LSTM predictor may not perform well for all data channels. To enhance adaptability, we propose a stacked predictor framework. This framework stacks three LSTM based predictors with different neuron arrangements and a Support Vector Machine (SVM) based predictor in its first layer. A traditional fully connected layer is used as its second layer. We then estimate the distribution of the error of the predicted output using Kernel Density Estimation (KDE). Finally, a novel dynamic thresholding algorithm is applied to optimally extract anomalous behavior in the data. We present the Stacked Predictor results against the benchmark from the NASA MSL/SMAP anomaly dataset.","PeriodicalId":371812,"journal":{"name":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Stacked Predictor and Dynamic Thresholding Algorithm for Anomaly Detection in Spacecraft\",\"authors\":\"Tianyu Li, M. Comer, E. Delp, Sundip R. Desai, James L. Mathieson, Richard H. Foster, Moses W. Chan\",\"doi\":\"10.1109/MILCOM47813.2019.9021055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly or abnormal behavior detection in downlinked spacecraft telemetry is a key step for determining root cause of subsystem failures. Long Short-Term Memory networks (LSTMs) have been demonstrated to be useful for anomaly detection in time series, due to their predictive power, especially with long sequences that contain contextual information. However, there could be thousands of telemetry channels transmitted from the spacecraft with diverse signal characteristics. A single LSTM predictor may not perform well for all data channels. To enhance adaptability, we propose a stacked predictor framework. This framework stacks three LSTM based predictors with different neuron arrangements and a Support Vector Machine (SVM) based predictor in its first layer. A traditional fully connected layer is used as its second layer. We then estimate the distribution of the error of the predicted output using Kernel Density Estimation (KDE). Finally, a novel dynamic thresholding algorithm is applied to optimally extract anomalous behavior in the data. We present the Stacked Predictor results against the benchmark from the NASA MSL/SMAP anomaly dataset.\",\"PeriodicalId\":371812,\"journal\":{\"name\":\"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM47813.2019.9021055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM47813.2019.9021055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

航天器下行遥测中的异常或异常行为检测是确定子系统故障根本原因的关键步骤。由于其预测能力,长短期记忆网络(LSTMs)已被证明对时间序列中的异常检测非常有用,特别是对于包含上下文信息的长序列。然而,可能有成千上万的遥测信道从航天器传输不同的信号特征。单个LSTM预测器可能不能很好地适用于所有数据通道。为了增强自适应性,我们提出了一个堆叠预测器框架。该框架将三个基于LSTM的不同神经元排列的预测器和一个基于支持向量机(SVM)的预测器堆叠在第一层。使用传统的全连接层作为其第二层。然后,我们使用核密度估计(KDE)估计预测输出的误差分布。最后,采用一种新的动态阈值算法对数据中的异常行为进行优化提取。我们给出了基于NASA MSL/SMAP异常数据集基准的堆叠预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Stacked Predictor and Dynamic Thresholding Algorithm for Anomaly Detection in Spacecraft
Anomaly or abnormal behavior detection in downlinked spacecraft telemetry is a key step for determining root cause of subsystem failures. Long Short-Term Memory networks (LSTMs) have been demonstrated to be useful for anomaly detection in time series, due to their predictive power, especially with long sequences that contain contextual information. However, there could be thousands of telemetry channels transmitted from the spacecraft with diverse signal characteristics. A single LSTM predictor may not perform well for all data channels. To enhance adaptability, we propose a stacked predictor framework. This framework stacks three LSTM based predictors with different neuron arrangements and a Support Vector Machine (SVM) based predictor in its first layer. A traditional fully connected layer is used as its second layer. We then estimate the distribution of the error of the predicted output using Kernel Density Estimation (KDE). Finally, a novel dynamic thresholding algorithm is applied to optimally extract anomalous behavior in the data. We present the Stacked Predictor results against the benchmark from the NASA MSL/SMAP anomaly dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信