随机图的友好等分

Asaf Ferber, Matthew Kwan, Bhargav P. Narayanan, A. Sah, Mehtaab Sawhney
{"title":"随机图的友好等分","authors":"Asaf Ferber, Matthew Kwan, Bhargav P. Narayanan, A. Sah, Mehtaab Sawhney","doi":"10.1090/cams/13","DOIUrl":null,"url":null,"abstract":"Resolving a conjecture of Füredi from 1988, we prove that with high probability, the random graph \n\n \n \n \n G\n \n (\n n\n ,\n 1\n \n /\n \n 2\n )\n \n \\mathbb {G}(n,1/2)\n \n\n admits a friendly bisection of its vertex set, i.e., a partition of its vertex set into two parts whose sizes differ by at most one in which \n\n \n \n n\n −\n o\n (\n n\n )\n \n n-o(n)\n \n\n vertices have more neighbours in their own part as across. Our proof is constructive, and in the process, we develop a new method to study stochastic processes driven by degree information in random graphs; this involves combining enumeration techniques with an abstract second moment argument.","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Friendly bisections of random graphs\",\"authors\":\"Asaf Ferber, Matthew Kwan, Bhargav P. Narayanan, A. Sah, Mehtaab Sawhney\",\"doi\":\"10.1090/cams/13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resolving a conjecture of Füredi from 1988, we prove that with high probability, the random graph \\n\\n \\n \\n \\n G\\n \\n (\\n n\\n ,\\n 1\\n \\n /\\n \\n 2\\n )\\n \\n \\\\mathbb {G}(n,1/2)\\n \\n\\n admits a friendly bisection of its vertex set, i.e., a partition of its vertex set into two parts whose sizes differ by at most one in which \\n\\n \\n \\n n\\n −\\n o\\n (\\n n\\n )\\n \\n n-o(n)\\n \\n\\n vertices have more neighbours in their own part as across. Our proof is constructive, and in the process, we develop a new method to study stochastic processes driven by degree information in random graphs; this involves combining enumeration techniques with an abstract second moment argument.\",\"PeriodicalId\":285678,\"journal\":{\"name\":\"Communications of the American Mathematical Society\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/cams/13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

通过求解1988年f redi的一个猜想,我们高概率地证明了随机图G (n,1/2) \mathbb {G}(n,1/2)允许其顶点集的友好对分,即它的顶点集被划分为两个大小最多只差一个的部分,其中n−o(n) n-o(n)个顶点在它们自己的部分有更多的邻居。我们的证明是建设性的,并且在此过程中,我们开发了一种研究随机图中由度信息驱动的随机过程的新方法;这涉及到将枚举技术与抽象的秒矩参数相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Friendly bisections of random graphs
Resolving a conjecture of Füredi from 1988, we prove that with high probability, the random graph G ( n , 1 / 2 ) \mathbb {G}(n,1/2) admits a friendly bisection of its vertex set, i.e., a partition of its vertex set into two parts whose sizes differ by at most one in which n − o ( n ) n-o(n) vertices have more neighbours in their own part as across. Our proof is constructive, and in the process, we develop a new method to study stochastic processes driven by degree information in random graphs; this involves combining enumeration techniques with an abstract second moment argument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信