{"title":"基于聚类的内容推荐的相关性、多样性和偶然性","authors":"Fernando Costa, Andrei Martins Silva, S. M. Peres","doi":"10.5753/ENIAC.2018.4463","DOIUrl":null,"url":null,"abstract":"In this paper, over-specialization in content-based recommender sys- tems is explored through the definition and analysis of recommendation strate- gies aiming at quality in terms of relevance, diversity and serendipity. Clustering is applied as the basis for building these strategies, applied to the news context. The results show the feasibility of the proposed strategies.","PeriodicalId":152292,"journal":{"name":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relevance, diversity and serendipity in content recommendation using clustering\",\"authors\":\"Fernando Costa, Andrei Martins Silva, S. M. Peres\",\"doi\":\"10.5753/ENIAC.2018.4463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, over-specialization in content-based recommender sys- tems is explored through the definition and analysis of recommendation strate- gies aiming at quality in terms of relevance, diversity and serendipity. Clustering is applied as the basis for building these strategies, applied to the news context. The results show the feasibility of the proposed strategies.\",\"PeriodicalId\":152292,\"journal\":{\"name\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/ENIAC.2018.4463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ENIAC.2018.4463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relevance, diversity and serendipity in content recommendation using clustering
In this paper, over-specialization in content-based recommender sys- tems is explored through the definition and analysis of recommendation strate- gies aiming at quality in terms of relevance, diversity and serendipity. Clustering is applied as the basis for building these strategies, applied to the news context. The results show the feasibility of the proposed strategies.