重采样阶段对粒子滤波器执行时间的贡献

Özcan Dülger, Halit Oğuztüzün
{"title":"重采样阶段对粒子滤波器执行时间的贡献","authors":"Özcan Dülger, Halit Oğuztüzün","doi":"10.1109/SIU.2019.8806527","DOIUrl":null,"url":null,"abstract":"Particle filter is a serial Monte Carlo estimation algorithm. It represents the posterior probability density function with particles and their weights. As time progresses, the normalized weight of one of particles becomes nearly one, while the normalized weights of the remaining ones get close to zero. A common way to solve this problem, known as the degeneracy problem, is resampling. In resampling, the particles with larger weights are replicated, and the particles with smaller weights are eliminated. To tackle the numerical instability problem that is encountered by some of the resampling methods, the Metropolis resampling method is proposed by Murray and his co-workers. Unfortunately, Metropolis is liable to non-coalesced global memory access patterns on the GPU. In this work, we point to the Metropolis-C1 and Metropolis-C2 resampling methods which are proposed earlier. Then we examine the contribution of the stages of the particle filter to the total execution time by increasing the number of particles on a tracking application on the GPU. We use the Sampling Importance Resampling (SIR) method, which is a common particle filter. In the experiments, Metropolis resampling consumes the biggest portion of the execution time of the SIR particle filter. The share of Metropolis increases as the number of particles grows. It can be argued that this is because of non-coalesced global memory access patterns. To reach this conclusion it is sufficient to i) Compare the results of Metropolis, which has non-coalesced access patterns, with Metropolis-C1 and Metropolis-C2, which have confined non-coalesced access patterns, ii) See that the previous stages of the SIR particle filter are not subject to non-coalesced access patterns.","PeriodicalId":326275,"journal":{"name":"2019 27th Signal Processing and Communications Applications Conference (SIU)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution of the Resampling Stage to the Execution Time of Particle Filter\",\"authors\":\"Özcan Dülger, Halit Oğuztüzün\",\"doi\":\"10.1109/SIU.2019.8806527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle filter is a serial Monte Carlo estimation algorithm. It represents the posterior probability density function with particles and their weights. As time progresses, the normalized weight of one of particles becomes nearly one, while the normalized weights of the remaining ones get close to zero. A common way to solve this problem, known as the degeneracy problem, is resampling. In resampling, the particles with larger weights are replicated, and the particles with smaller weights are eliminated. To tackle the numerical instability problem that is encountered by some of the resampling methods, the Metropolis resampling method is proposed by Murray and his co-workers. Unfortunately, Metropolis is liable to non-coalesced global memory access patterns on the GPU. In this work, we point to the Metropolis-C1 and Metropolis-C2 resampling methods which are proposed earlier. Then we examine the contribution of the stages of the particle filter to the total execution time by increasing the number of particles on a tracking application on the GPU. We use the Sampling Importance Resampling (SIR) method, which is a common particle filter. In the experiments, Metropolis resampling consumes the biggest portion of the execution time of the SIR particle filter. The share of Metropolis increases as the number of particles grows. It can be argued that this is because of non-coalesced global memory access patterns. To reach this conclusion it is sufficient to i) Compare the results of Metropolis, which has non-coalesced access patterns, with Metropolis-C1 and Metropolis-C2, which have confined non-coalesced access patterns, ii) See that the previous stages of the SIR particle filter are not subject to non-coalesced access patterns.\",\"PeriodicalId\":326275,\"journal\":{\"name\":\"2019 27th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 27th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2019.8806527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2019.8806527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粒子滤波是一种串行蒙特卡罗估计算法。它表示粒子及其权重的后验概率密度函数。随着时间的推移,其中一个粒子的归一化权值趋近于1,其余粒子的归一化权值趋近于0。解决这个问题的一个常用方法是重新采样,这个问题被称为退化问题。在重采样中,重采样权值较大的粒子被复制,而重采样权值较小的粒子被剔除。为了解决一些重采样方法所遇到的数值不稳定性问题,Murray及其同事提出了Metropolis重采样方法。不幸的是,Metropolis易受GPU上非合并全局内存访问模式的影响。在这项工作中,我们指出了先前提出的Metropolis-C1和Metropolis-C2重采样方法。然后,我们通过增加GPU上跟踪应用程序上的粒子数量来检查粒子过滤器阶段对总执行时间的贡献。我们使用采样重要性重采样(SIR)方法,这是一种常见的粒子滤波方法。在实验中,Metropolis重采样消耗SIR粒子滤波的最大一部分执行时间。Metropolis的份额随着粒子数量的增加而增加。可以认为,这是因为非合并的全局内存访问模式。为了得出这个结论,i)将具有非聚并访问模式的Metropolis的结果与具有受限非聚并访问模式的Metropolis- c1和Metropolis- c2的结果进行比较,ii)看到SIR粒子过滤器的前几阶段不受非聚并访问模式的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contribution of the Resampling Stage to the Execution Time of Particle Filter
Particle filter is a serial Monte Carlo estimation algorithm. It represents the posterior probability density function with particles and their weights. As time progresses, the normalized weight of one of particles becomes nearly one, while the normalized weights of the remaining ones get close to zero. A common way to solve this problem, known as the degeneracy problem, is resampling. In resampling, the particles with larger weights are replicated, and the particles with smaller weights are eliminated. To tackle the numerical instability problem that is encountered by some of the resampling methods, the Metropolis resampling method is proposed by Murray and his co-workers. Unfortunately, Metropolis is liable to non-coalesced global memory access patterns on the GPU. In this work, we point to the Metropolis-C1 and Metropolis-C2 resampling methods which are proposed earlier. Then we examine the contribution of the stages of the particle filter to the total execution time by increasing the number of particles on a tracking application on the GPU. We use the Sampling Importance Resampling (SIR) method, which is a common particle filter. In the experiments, Metropolis resampling consumes the biggest portion of the execution time of the SIR particle filter. The share of Metropolis increases as the number of particles grows. It can be argued that this is because of non-coalesced global memory access patterns. To reach this conclusion it is sufficient to i) Compare the results of Metropolis, which has non-coalesced access patterns, with Metropolis-C1 and Metropolis-C2, which have confined non-coalesced access patterns, ii) See that the previous stages of the SIR particle filter are not subject to non-coalesced access patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信