一种新的基于自组织映射的图像编码方案

Hongsong Li, Da Li
{"title":"一种新的基于自组织映射的图像编码方案","authors":"Hongsong Li, Da Li","doi":"10.1109/BICTA.2010.5645202","DOIUrl":null,"url":null,"abstract":"This paper presents a image coding scheme based upon improved self-organizing neural network, FSOM-VQ-DWT. Firstly original image is predicted by vector quantization (VQ), then the predicted error image is encoded by standard JPEG2000. To improve the performance of VQ codebook, we have proposed a new frequency sensitive self-organizing feature maps (FSOM) algorithm. Experimental results show that the proposed FSOM-VQ-DWT coding scheme can get better coding performance than standard JPEG 2000.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"2 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new image coding scheme based upon self organizing maps\",\"authors\":\"Hongsong Li, Da Li\",\"doi\":\"10.1109/BICTA.2010.5645202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a image coding scheme based upon improved self-organizing neural network, FSOM-VQ-DWT. Firstly original image is predicted by vector quantization (VQ), then the predicted error image is encoded by standard JPEG2000. To improve the performance of VQ codebook, we have proposed a new frequency sensitive self-organizing feature maps (FSOM) algorithm. Experimental results show that the proposed FSOM-VQ-DWT coding scheme can get better coding performance than standard JPEG 2000.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"2 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于改进自组织神经网络FSOM-VQ-DWT的图像编码方案。首先对原始图像进行矢量量化(VQ)预测,然后对预测误差图像进行标准JPEG2000编码。为了提高VQ码本的性能,提出了一种新的频率敏感自组织特征映射(FSOM)算法。实验结果表明,所提出的FSOM-VQ-DWT编码方案比标准JPEG 2000具有更好的编码性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new image coding scheme based upon self organizing maps
This paper presents a image coding scheme based upon improved self-organizing neural network, FSOM-VQ-DWT. Firstly original image is predicted by vector quantization (VQ), then the predicted error image is encoded by standard JPEG2000. To improve the performance of VQ codebook, we have proposed a new frequency sensitive self-organizing feature maps (FSOM) algorithm. Experimental results show that the proposed FSOM-VQ-DWT coding scheme can get better coding performance than standard JPEG 2000.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信