脑卒中患者与正常人情绪脑电图信号的时域分析

Edwin Vincen, W. Khairunizam, Choong Wen Yean, W. Mustafa
{"title":"脑卒中患者与正常人情绪脑电图信号的时域分析","authors":"Edwin Vincen, W. Khairunizam, Choong Wen Yean, W. Mustafa","doi":"10.1109/ICCAE56788.2023.10111252","DOIUrl":null,"url":null,"abstract":"This paper aims to analyze the emotional Electroencephalogram (EEG) signals of different time windows. The time window of the signals is one of the variables that affect the efficiency of the EEG signal analysis. In this research, a total of 30 subjects are analyzed from three different groups namely 10 left brain damage (LBD), 10 right brain damage (RBD), and 10 normal control (NC) for six different emotional states. The 14-Channel Wireless Emotiv EPOC device with a sampling frequency of 128 Hz is used to extract EEG signal from the subjects. The 6th Order Butterworth Bandpass filter is used to extract the EEG signals with the frequency band of 8-49 Hz, which are alpha to gamma waves. The EEG signals are segmented in 2s, 4s, 6s, and 8s time windows for all frequency bands. In addition, the K-Nearest Neighbor (KNN) and Probabilistic Neural Network (PNN) classifiers are used to classify the six emotions in LBD, RBD and NC. The beta and gamma bands are the best performing EEG frequency band for emotion classification. In the investigation, 6s time windows have the highest classification accuracy for KNN with 81.90% and 8s time window for PNN classifier with 82.15%.","PeriodicalId":406112,"journal":{"name":"2023 15th International Conference on Computer and Automation Engineering (ICCAE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Domain Analysis for Emotional EEG Signals of Stroke Patient and Normal Subject\",\"authors\":\"Edwin Vincen, W. Khairunizam, Choong Wen Yean, W. Mustafa\",\"doi\":\"10.1109/ICCAE56788.2023.10111252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to analyze the emotional Electroencephalogram (EEG) signals of different time windows. The time window of the signals is one of the variables that affect the efficiency of the EEG signal analysis. In this research, a total of 30 subjects are analyzed from three different groups namely 10 left brain damage (LBD), 10 right brain damage (RBD), and 10 normal control (NC) for six different emotional states. The 14-Channel Wireless Emotiv EPOC device with a sampling frequency of 128 Hz is used to extract EEG signal from the subjects. The 6th Order Butterworth Bandpass filter is used to extract the EEG signals with the frequency band of 8-49 Hz, which are alpha to gamma waves. The EEG signals are segmented in 2s, 4s, 6s, and 8s time windows for all frequency bands. In addition, the K-Nearest Neighbor (KNN) and Probabilistic Neural Network (PNN) classifiers are used to classify the six emotions in LBD, RBD and NC. The beta and gamma bands are the best performing EEG frequency band for emotion classification. In the investigation, 6s time windows have the highest classification accuracy for KNN with 81.90% and 8s time window for PNN classifier with 82.15%.\",\"PeriodicalId\":406112,\"journal\":{\"name\":\"2023 15th International Conference on Computer and Automation Engineering (ICCAE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 15th International Conference on Computer and Automation Engineering (ICCAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAE56788.2023.10111252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Computer and Automation Engineering (ICCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAE56788.2023.10111252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在分析不同时间窗的情绪脑电图(EEG)信号。信号的时间窗是影响脑电信号分析效率的变量之一。本研究共对30名受试者进行了6种不同情绪状态下的分析,分别分为左脑损伤组(LBD)、右脑损伤组(RBD)和正常对照组(NC)。采用采样频率为128 Hz的14通道无线Emotiv EPOC装置提取被试脑电信号。采用六阶巴特沃斯带通滤波器提取8 ~ 49 Hz频段的脑电信号,即α ~ γ波。对各频段的脑电信号分别进行2s、4s、6s、8s时间窗的分割。此外,利用k近邻(KNN)和概率神经网络(PNN)分类器对LBD、RBD和NC中的6种情绪进行分类。β和γ波段是情绪分类中表现最好的EEG频段。在调查中,KNN分类器的分类准确率最高,为81.90%;PNN分类器的分类准确率最高,为82.15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Domain Analysis for Emotional EEG Signals of Stroke Patient and Normal Subject
This paper aims to analyze the emotional Electroencephalogram (EEG) signals of different time windows. The time window of the signals is one of the variables that affect the efficiency of the EEG signal analysis. In this research, a total of 30 subjects are analyzed from three different groups namely 10 left brain damage (LBD), 10 right brain damage (RBD), and 10 normal control (NC) for six different emotional states. The 14-Channel Wireless Emotiv EPOC device with a sampling frequency of 128 Hz is used to extract EEG signal from the subjects. The 6th Order Butterworth Bandpass filter is used to extract the EEG signals with the frequency band of 8-49 Hz, which are alpha to gamma waves. The EEG signals are segmented in 2s, 4s, 6s, and 8s time windows for all frequency bands. In addition, the K-Nearest Neighbor (KNN) and Probabilistic Neural Network (PNN) classifiers are used to classify the six emotions in LBD, RBD and NC. The beta and gamma bands are the best performing EEG frequency band for emotion classification. In the investigation, 6s time windows have the highest classification accuracy for KNN with 81.90% and 8s time window for PNN classifier with 82.15%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信