套利定价

Tomas Björk
{"title":"套利定价","authors":"Tomas Björk","doi":"10.1093/oso/9780198851615.003.0007","DOIUrl":null,"url":null,"abstract":"The chapter starts with a detailed discussion of the bank account in discrete and continuous time. The Black–Scholes model is then introduced, and using the principle of no arbitrage we study the problem of pricing an arbitrary financial derivative within this model. Using the classical delta hedging approach we derive the Black–Scholes PDE for the pricing problem and using Feynman–Kač we also derive the corresponding risk neutral valuation formula and discuss the connection to martingale measures. Some concrete examples are studied in detail and the Black–Scholes formula is derived. We also discuss forward and futures contracts, and we derive the Black-76 futures option formula. We finally discuss the concepts and roles of historic and implied volatility.","PeriodicalId":311283,"journal":{"name":"Arbitrage Theory in Continuous Time","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbitrage Pricing\",\"authors\":\"Tomas Björk\",\"doi\":\"10.1093/oso/9780198851615.003.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chapter starts with a detailed discussion of the bank account in discrete and continuous time. The Black–Scholes model is then introduced, and using the principle of no arbitrage we study the problem of pricing an arbitrary financial derivative within this model. Using the classical delta hedging approach we derive the Black–Scholes PDE for the pricing problem and using Feynman–Kač we also derive the corresponding risk neutral valuation formula and discuss the connection to martingale measures. Some concrete examples are studied in detail and the Black–Scholes formula is derived. We also discuss forward and futures contracts, and we derive the Black-76 futures option formula. We finally discuss the concepts and roles of historic and implied volatility.\",\"PeriodicalId\":311283,\"journal\":{\"name\":\"Arbitrage Theory in Continuous Time\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arbitrage Theory in Continuous Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198851615.003.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arbitrage Theory in Continuous Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198851615.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章首先详细讨论了离散时间和连续时间下的银行帐户。然后引入布莱克-斯科尔斯模型,并利用无套利原则研究了该模型中任意金融衍生品的定价问题。利用经典的delta套期保值方法推导了定价问题的Black-Scholes PDE,并利用feynman - kazei方法推导了相应的风险中性估值公式,并讨论了与鞅测度的联系。对一些具体的例子进行了详细的研究,并推导出Black-Scholes公式。我们还讨论了远期和期货合约,并推导了Black-76期货期权公式。最后,我们讨论了历史波动率和隐含波动率的概念和作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arbitrage Pricing
The chapter starts with a detailed discussion of the bank account in discrete and continuous time. The Black–Scholes model is then introduced, and using the principle of no arbitrage we study the problem of pricing an arbitrary financial derivative within this model. Using the classical delta hedging approach we derive the Black–Scholes PDE for the pricing problem and using Feynman–Kač we also derive the corresponding risk neutral valuation formula and discuss the connection to martingale measures. Some concrete examples are studied in detail and the Black–Scholes formula is derived. We also discuss forward and futures contracts, and we derive the Black-76 futures option formula. We finally discuss the concepts and roles of historic and implied volatility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信