{"title":"好的和坏的控制速成班","authors":"Carlos Cinelli, A. Forney, J. Pearl","doi":"10.2139/ssrn.3689437","DOIUrl":null,"url":null,"abstract":"Many students, especially in econometrics, express frustration with the way a problem known as “bad control” is evaded, if not mishandled, in the traditional literature. The problem arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is expected to represent. Avoiding such discrepancies presents a challenge not only to practitioners of econometrics, but to all analysts in the data intensive sciences. This note describes graphical tools for understanding, visualizing, and resolving the problem through a series of illustrative examples. We have found that the examples presented here can serve as a powerful instructional device to supplement formal discussions of the problem. By making this “crash course” accessible to instructors and practitioners, we hope to avail these tools to a broader community of scientists concerned with the causal interpretation of regression models.","PeriodicalId":163739,"journal":{"name":"ERN: Model Construction & Selection (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"170","resultStr":"{\"title\":\"A Crash Course in Good and Bad Controls\",\"authors\":\"Carlos Cinelli, A. Forney, J. Pearl\",\"doi\":\"10.2139/ssrn.3689437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many students, especially in econometrics, express frustration with the way a problem known as “bad control” is evaded, if not mishandled, in the traditional literature. The problem arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is expected to represent. Avoiding such discrepancies presents a challenge not only to practitioners of econometrics, but to all analysts in the data intensive sciences. This note describes graphical tools for understanding, visualizing, and resolving the problem through a series of illustrative examples. We have found that the examples presented here can serve as a powerful instructional device to supplement formal discussions of the problem. By making this “crash course” accessible to instructors and practitioners, we hope to avail these tools to a broader community of scientists concerned with the causal interpretation of regression models.\",\"PeriodicalId\":163739,\"journal\":{\"name\":\"ERN: Model Construction & Selection (Topic)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"170\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Selection (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3689437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Selection (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3689437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Many students, especially in econometrics, express frustration with the way a problem known as “bad control” is evaded, if not mishandled, in the traditional literature. The problem arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is expected to represent. Avoiding such discrepancies presents a challenge not only to practitioners of econometrics, but to all analysts in the data intensive sciences. This note describes graphical tools for understanding, visualizing, and resolving the problem through a series of illustrative examples. We have found that the examples presented here can serve as a powerful instructional device to supplement formal discussions of the problem. By making this “crash course” accessible to instructors and practitioners, we hope to avail these tools to a broader community of scientists concerned with the causal interpretation of regression models.