孤立词识别中的半连续隐马尔可夫模型

X. Huang, M. Jack
{"title":"孤立词识别中的半连续隐马尔可夫模型","authors":"X. Huang, M. Jack","doi":"10.1109/ICPR.1988.28254","DOIUrl":null,"url":null,"abstract":"A semicontinuous hidden Markov model is proposed to incorporate the vector quantization distortion into the general hidden Markov model methodology under a probabilistic framework. It provides a relatively simple but powerful tool for modeling time-varying signal sources. Experimental results show that the recognition accuracy of the semi-continuous model is measurably improved in comparison to that of the conventional discrete hidden Markov model and template-based dynamic time warping techniques.<<ETX>>","PeriodicalId":314236,"journal":{"name":"[1988 Proceedings] 9th International Conference on Pattern Recognition","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Semi-continuous hidden Markov models in isolated word recognition\",\"authors\":\"X. Huang, M. Jack\",\"doi\":\"10.1109/ICPR.1988.28254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A semicontinuous hidden Markov model is proposed to incorporate the vector quantization distortion into the general hidden Markov model methodology under a probabilistic framework. It provides a relatively simple but powerful tool for modeling time-varying signal sources. Experimental results show that the recognition accuracy of the semi-continuous model is measurably improved in comparison to that of the conventional discrete hidden Markov model and template-based dynamic time warping techniques.<<ETX>>\",\"PeriodicalId\":314236,\"journal\":{\"name\":\"[1988 Proceedings] 9th International Conference on Pattern Recognition\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988 Proceedings] 9th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1988.28254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988 Proceedings] 9th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1988.28254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种半连续隐马尔可夫模型,在概率框架下将矢量量化失真纳入一般隐马尔可夫模型方法。它为时变信号源的建模提供了一个相对简单但功能强大的工具。实验结果表明,与传统的离散隐马尔可夫模型和基于模板的动态时间规整技术相比,半连续模型的识别精度有了明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-continuous hidden Markov models in isolated word recognition
A semicontinuous hidden Markov model is proposed to incorporate the vector quantization distortion into the general hidden Markov model methodology under a probabilistic framework. It provides a relatively simple but powerful tool for modeling time-varying signal sources. Experimental results show that the recognition accuracy of the semi-continuous model is measurably improved in comparison to that of the conventional discrete hidden Markov model and template-based dynamic time warping techniques.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信