锁相接收机阈值的解析逼近

J. Develet
{"title":"锁相接收机阈值的解析逼近","authors":"J. Develet","doi":"10.1109/TSET.1963.4337591","DOIUrl":null,"url":null,"abstract":"The quasi-linearization procedure of Booton is applied to obtain an analytic approximation to phase-lock receiver threshold. Only the situation of an unmodulated sinusoid embedded in additive white Gaussian noise has been considered. The threshold signal-to-noise power ratio in the two-sided loop noise bandwidth of a phase-lock receiver of arbitrary transfer function was found to be 1.34 db. At threshold the rms loop error is 1.0 radian. The special situation of a high gain second-order receiver was also treated. In order to compare the analytical results with possible future measurements, the high S/N bandwidth was chosen as a reference point. Referred to this high S/N bandwidth, the threshold signal-to-noise power ratio of -0.2 db and a corresponding rms loop error of 1.16 radians were derived. The applicability of Booton's linearization procedure to nonlinear systems with statistical inputs has been experimentally verified in control system applications similar in nature to the phase-lock loop with excellent results. It is therefore anticipated that the application to phase-lock loop analysis should yield a mathematical model which describes the system more closely than strictly linear approximations.","PeriodicalId":153922,"journal":{"name":"IEEE Transactions on Space Electronics and Telemetry","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1963-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Analytic Approximation of Phase-Lock Receiver Threshold\",\"authors\":\"J. Develet\",\"doi\":\"10.1109/TSET.1963.4337591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quasi-linearization procedure of Booton is applied to obtain an analytic approximation to phase-lock receiver threshold. Only the situation of an unmodulated sinusoid embedded in additive white Gaussian noise has been considered. The threshold signal-to-noise power ratio in the two-sided loop noise bandwidth of a phase-lock receiver of arbitrary transfer function was found to be 1.34 db. At threshold the rms loop error is 1.0 radian. The special situation of a high gain second-order receiver was also treated. In order to compare the analytical results with possible future measurements, the high S/N bandwidth was chosen as a reference point. Referred to this high S/N bandwidth, the threshold signal-to-noise power ratio of -0.2 db and a corresponding rms loop error of 1.16 radians were derived. The applicability of Booton's linearization procedure to nonlinear systems with statistical inputs has been experimentally verified in control system applications similar in nature to the phase-lock loop with excellent results. It is therefore anticipated that the application to phase-lock loop analysis should yield a mathematical model which describes the system more closely than strictly linear approximations.\",\"PeriodicalId\":153922,\"journal\":{\"name\":\"IEEE Transactions on Space Electronics and Telemetry\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1963-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Space Electronics and Telemetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSET.1963.4337591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Space Electronics and Telemetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSET.1963.4337591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

采用Booton的准线性化方法,得到锁相接收机阈值的解析近似。只考虑了未调制正弦波嵌入加性高斯白噪声的情况。发现任意传递函数锁相接收机的双侧环路噪声带宽的阈值信噪比为1.34 db。在阈值处,rms循环误差为1.0弧度。对高增益二阶接收机的特殊情况也进行了分析。为了将分析结果与未来可能的测量结果进行比较,选择高信噪比带宽作为参考点。根据这一高信噪比带宽,得出阈值信噪比为-0.2 db,对应的rms环路误差为1.16弧度。布顿线性化方法对具有统计输入的非线性系统的适用性已经在与锁相环性质相似的控制系统应用中得到了实验验证,并取得了良好的结果。因此,预期锁相环分析的应用将产生一个比严格的线性近似更接近描述系统的数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analytic Approximation of Phase-Lock Receiver Threshold
The quasi-linearization procedure of Booton is applied to obtain an analytic approximation to phase-lock receiver threshold. Only the situation of an unmodulated sinusoid embedded in additive white Gaussian noise has been considered. The threshold signal-to-noise power ratio in the two-sided loop noise bandwidth of a phase-lock receiver of arbitrary transfer function was found to be 1.34 db. At threshold the rms loop error is 1.0 radian. The special situation of a high gain second-order receiver was also treated. In order to compare the analytical results with possible future measurements, the high S/N bandwidth was chosen as a reference point. Referred to this high S/N bandwidth, the threshold signal-to-noise power ratio of -0.2 db and a corresponding rms loop error of 1.16 radians were derived. The applicability of Booton's linearization procedure to nonlinear systems with statistical inputs has been experimentally verified in control system applications similar in nature to the phase-lock loop with excellent results. It is therefore anticipated that the application to phase-lock loop analysis should yield a mathematical model which describes the system more closely than strictly linear approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信