Maciej Besta, S. M. Hassan, S. Yalamanchili, Rachata Ausavarungnirun, O. Mutlu, T. Hoefler
{"title":"超薄NoC:一种低直径片上网络拓扑结构,具有高能效和可扩展性","authors":"Maciej Besta, S. M. Hassan, S. Yalamanchili, Rachata Ausavarungnirun, O. Mutlu, T. Hoefler","doi":"10.1145/3173162.3177158","DOIUrl":null,"url":null,"abstract":"Emerging chips with hundreds and thousands of cores require networks with unprecedented energy/area efficiency and scalability. To address this, we propose Slim NoC (SN): a new on-chip network design that delivers significant improvements in efficiency and scalability compared to the state-of-the-art. The key idea is to use two concepts from graph and number theory, degree-diameter graphs combined with non-prime finite fields, to enable the smallest number of ports for a given core count. SN is inspired by state-of-the-art off-chip topologies; it identifies and distills their advantages for NoC settings while solving several key issues that lead to significant overheads on-chip. SN provides NoC-specific layouts, which further enhance area/energy efficiency. We show how to augment SN with state-of-the-art router microarchitecture schemes such as Elastic Links, to make the network even more scalable and efficient. Our extensive experimental evaluations show that SN outperforms both traditional low-radix topologies (e.g., meshes and tori) and modern high-radix networks (e.g., various Flattened Butterflies) in area, latency, throughput, and static/dynamic power consumption for both synthetic and real workloads. SN provides a promising direction in scalable and energy-efficient NoC topologies.","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Slim NoC: A Low-Diameter On-Chip Network Topology for High Energy Efficiency and Scalability\",\"authors\":\"Maciej Besta, S. M. Hassan, S. Yalamanchili, Rachata Ausavarungnirun, O. Mutlu, T. Hoefler\",\"doi\":\"10.1145/3173162.3177158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging chips with hundreds and thousands of cores require networks with unprecedented energy/area efficiency and scalability. To address this, we propose Slim NoC (SN): a new on-chip network design that delivers significant improvements in efficiency and scalability compared to the state-of-the-art. The key idea is to use two concepts from graph and number theory, degree-diameter graphs combined with non-prime finite fields, to enable the smallest number of ports for a given core count. SN is inspired by state-of-the-art off-chip topologies; it identifies and distills their advantages for NoC settings while solving several key issues that lead to significant overheads on-chip. SN provides NoC-specific layouts, which further enhance area/energy efficiency. We show how to augment SN with state-of-the-art router microarchitecture schemes such as Elastic Links, to make the network even more scalable and efficient. Our extensive experimental evaluations show that SN outperforms both traditional low-radix topologies (e.g., meshes and tori) and modern high-radix networks (e.g., various Flattened Butterflies) in area, latency, throughput, and static/dynamic power consumption for both synthetic and real workloads. SN provides a promising direction in scalable and energy-efficient NoC topologies.\",\"PeriodicalId\":302876,\"journal\":{\"name\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173162.3177158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3177158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Slim NoC: A Low-Diameter On-Chip Network Topology for High Energy Efficiency and Scalability
Emerging chips with hundreds and thousands of cores require networks with unprecedented energy/area efficiency and scalability. To address this, we propose Slim NoC (SN): a new on-chip network design that delivers significant improvements in efficiency and scalability compared to the state-of-the-art. The key idea is to use two concepts from graph and number theory, degree-diameter graphs combined with non-prime finite fields, to enable the smallest number of ports for a given core count. SN is inspired by state-of-the-art off-chip topologies; it identifies and distills their advantages for NoC settings while solving several key issues that lead to significant overheads on-chip. SN provides NoC-specific layouts, which further enhance area/energy efficiency. We show how to augment SN with state-of-the-art router microarchitecture schemes such as Elastic Links, to make the network even more scalable and efficient. Our extensive experimental evaluations show that SN outperforms both traditional low-radix topologies (e.g., meshes and tori) and modern high-radix networks (e.g., various Flattened Butterflies) in area, latency, throughput, and static/dynamic power consumption for both synthetic and real workloads. SN provides a promising direction in scalable and energy-efficient NoC topologies.