φ-混合源SWLZ算法中冗余度的逐点分析

Ayush Jain, R. Bansal
{"title":"φ-混合源SWLZ算法中冗余度的逐点分析","authors":"Ayush Jain, R. Bansal","doi":"10.1109/ITW.2015.7133103","DOIUrl":null,"url":null,"abstract":"In this paper, we bound the number of phrases of the sliding window Lempel-Ziv (SWLZ) algorithm using an upper bound on the expected number of phrases in the fixed database Lempel-Ziv (FDLZ) algorithm for a class of φ-mixing sources which includes Markov sources, unifilar sources and finite state sources as special cases, as developed by Yang and Kieffer [1]. We use this bound to obtain a point-wise upper bound on the redundancy rate of SWLZ algorithm to be 2H(log<sub>2</sub>log<sub>2</sub>n<sub>w</sub>/log<sub>2</sub>n<sub>w</sub>) + O(log<sub>2</sub>log<sub>2</sub>log<sub>2</sub>n<sub>w</sub>/log<sub>2</sub>n<sub>w</sub>). Here H is the entropy rate of the source and n<sub>w</sub> is the window size.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Point-wise analysis of redundancy in SWLZ algorithm for φ-mixing sources\",\"authors\":\"Ayush Jain, R. Bansal\",\"doi\":\"10.1109/ITW.2015.7133103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we bound the number of phrases of the sliding window Lempel-Ziv (SWLZ) algorithm using an upper bound on the expected number of phrases in the fixed database Lempel-Ziv (FDLZ) algorithm for a class of φ-mixing sources which includes Markov sources, unifilar sources and finite state sources as special cases, as developed by Yang and Kieffer [1]. We use this bound to obtain a point-wise upper bound on the redundancy rate of SWLZ algorithm to be 2H(log<sub>2</sub>log<sub>2</sub>n<sub>w</sub>/log<sub>2</sub>n<sub>w</sub>) + O(log<sub>2</sub>log<sub>2</sub>log<sub>2</sub>n<sub>w</sub>/log<sub>2</sub>n<sub>w</sub>). Here H is the entropy rate of the source and n<sub>w</sub> is the window size.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们使用固定数据库Lempel-Ziv (FDLZ)算法中期望短语数的上界对滑动窗口Lempel-Ziv (SWLZ)算法的短语数进行了定界,该算法适用于一类φ-混合源,其中包括由Yang和Kieffer[1]提出的马尔可夫源、相似源和有限状态源作为特殊情况。我们利用这个界得到了SWLZ算法冗余率的逐点上界为2H(log2log2nw/log2nw) + O(log2log2log2nw/log2nw)。这里H是源的熵率nw是窗口大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point-wise analysis of redundancy in SWLZ algorithm for φ-mixing sources
In this paper, we bound the number of phrases of the sliding window Lempel-Ziv (SWLZ) algorithm using an upper bound on the expected number of phrases in the fixed database Lempel-Ziv (FDLZ) algorithm for a class of φ-mixing sources which includes Markov sources, unifilar sources and finite state sources as special cases, as developed by Yang and Kieffer [1]. We use this bound to obtain a point-wise upper bound on the redundancy rate of SWLZ algorithm to be 2H(log2log2nw/log2nw) + O(log2log2log2nw/log2nw). Here H is the entropy rate of the source and nw is the window size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信