{"title":"基于神经艺术的视频数据人脸去识别研究","authors":"K. Brkić, T. Hrkać, I. Sikirić, Z. Kalafatić","doi":"10.1109/SPLIM.2016.7528406","DOIUrl":null,"url":null,"abstract":"We propose a computer vision-based pipeline that enables altering the appearance of faces in videos. Assuming a surveillance scenario, we combine GMM-based background subtraction with an improved version of the GrabCut algorithm to find and segment pedestrians. Independently, we detect faces using a standard face detector. We apply the neural art algorithm, utilizing the responses of a deep neural network to obfuscate the detected faces through style mixing with reference images. The altered faces are combined with the original frames using the extracted pedestrian silhouettes as a guideline. Experimental evaluation indicates that our method has potential in producing de-identified versions of the input frames while preserving the utility of the de-identified data.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards neural art-based face de-identification in video data\",\"authors\":\"K. Brkić, T. Hrkać, I. Sikirić, Z. Kalafatić\",\"doi\":\"10.1109/SPLIM.2016.7528406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a computer vision-based pipeline that enables altering the appearance of faces in videos. Assuming a surveillance scenario, we combine GMM-based background subtraction with an improved version of the GrabCut algorithm to find and segment pedestrians. Independently, we detect faces using a standard face detector. We apply the neural art algorithm, utilizing the responses of a deep neural network to obfuscate the detected faces through style mixing with reference images. The altered faces are combined with the original frames using the extracted pedestrian silhouettes as a guideline. Experimental evaluation indicates that our method has potential in producing de-identified versions of the input frames while preserving the utility of the de-identified data.\",\"PeriodicalId\":297318,\"journal\":{\"name\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPLIM.2016.7528406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards neural art-based face de-identification in video data
We propose a computer vision-based pipeline that enables altering the appearance of faces in videos. Assuming a surveillance scenario, we combine GMM-based background subtraction with an improved version of the GrabCut algorithm to find and segment pedestrians. Independently, we detect faces using a standard face detector. We apply the neural art algorithm, utilizing the responses of a deep neural network to obfuscate the detected faces through style mixing with reference images. The altered faces are combined with the original frames using the extracted pedestrian silhouettes as a guideline. Experimental evaluation indicates that our method has potential in producing de-identified versions of the input frames while preserving the utility of the de-identified data.