数据在云中的地理位置

Mark A. Gondree, Zachary N. J. Peterson
{"title":"数据在云中的地理位置","authors":"Mark A. Gondree, Zachary N. J. Peterson","doi":"10.1145/2435349.2435353","DOIUrl":null,"url":null,"abstract":"We introduce and analyze a general framework for authentically binding data to a location while providing strong assurances against cloud storage providers that (either accidentally or maliciously) attempt to re-locate cloud data. We then evaluate a preliminary solution in this framework that combines constraint-based host geolocation with proofs of data possession, called constraint-based data geolocation (CBDG). We evaluate CBDG using a combination of experiments with PlanetLab and real cloud storage services, demonstrating that we can bind fetched data to the location originally hosting it with high precision. We geolocate data hosted on the majority of our PlanetLab targets to regions no larger than 118,000 km^2, and we geolocate data hosted on Amazon S3 to an area no larger than 12,000 km^2, sufficiently small to identify the state or service region.","PeriodicalId":118139,"journal":{"name":"Proceedings of the third ACM conference on Data and application security and privacy","volume":"C-23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Geolocation of data in the cloud\",\"authors\":\"Mark A. Gondree, Zachary N. J. Peterson\",\"doi\":\"10.1145/2435349.2435353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and analyze a general framework for authentically binding data to a location while providing strong assurances against cloud storage providers that (either accidentally or maliciously) attempt to re-locate cloud data. We then evaluate a preliminary solution in this framework that combines constraint-based host geolocation with proofs of data possession, called constraint-based data geolocation (CBDG). We evaluate CBDG using a combination of experiments with PlanetLab and real cloud storage services, demonstrating that we can bind fetched data to the location originally hosting it with high precision. We geolocate data hosted on the majority of our PlanetLab targets to regions no larger than 118,000 km^2, and we geolocate data hosted on Amazon S3 to an area no larger than 12,000 km^2, sufficiently small to identify the state or service region.\",\"PeriodicalId\":118139,\"journal\":{\"name\":\"Proceedings of the third ACM conference on Data and application security and privacy\",\"volume\":\"C-23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the third ACM conference on Data and application security and privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2435349.2435353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the third ACM conference on Data and application security and privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2435349.2435353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

摘要

我们介绍并分析了一个通用框架,用于将数据真实地绑定到一个位置,同时提供强大的保证,防止云存储提供商(意外或恶意)试图重新定位云数据。然后,我们评估了该框架中的初步解决方案,该解决方案将基于约束的主机地理定位与数据拥有证明相结合,称为基于约束的数据地理定位(CBDG)。我们使用PlanetLab和真实云存储服务的实验组合来评估CBDG,证明我们可以以高精度将获取的数据绑定到最初托管数据的位置。我们将托管在大多数PlanetLab目标上的数据定位到不大于118,000 km^2的区域,并将托管在Amazon S3上的数据定位到不大于12,000 km^2的区域,该区域小到足以识别州或服务区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geolocation of data in the cloud
We introduce and analyze a general framework for authentically binding data to a location while providing strong assurances against cloud storage providers that (either accidentally or maliciously) attempt to re-locate cloud data. We then evaluate a preliminary solution in this framework that combines constraint-based host geolocation with proofs of data possession, called constraint-based data geolocation (CBDG). We evaluate CBDG using a combination of experiments with PlanetLab and real cloud storage services, demonstrating that we can bind fetched data to the location originally hosting it with high precision. We geolocate data hosted on the majority of our PlanetLab targets to regions no larger than 118,000 km^2, and we geolocate data hosted on Amazon S3 to an area no larger than 12,000 km^2, sufficiently small to identify the state or service region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信