创建深度学习模型的可视化编程工具

Tommaso Calò, Luigi De Russis
{"title":"创建深度学习模型的可视化编程工具","authors":"Tommaso Calò, Luigi De Russis","doi":"10.1145/3596454.3597181","DOIUrl":null,"url":null,"abstract":"Deep Learning (DL) developers come from different backgrounds, e.g., medicine, genomics, finance, and computer science. To create a DL model, they must learn and use high-level programming languages (e.g., Python), thus needing to handle related setups and solve programming errors. This paper presents DeepBlocks, a visual programming tool that allows DL developers to design, train, and evaluate models without relying on specific programming languages. DeepBlocks works by building on the typical model structure: a sequence of learnable functions whose arrangement defines the specific characteristics of the model. We derived DeepBlocks’ design goals from a 5-participants formative interview, and we validated the first implementation of the tool through a typical use case. Results are promising and show that developers could visually design complex DL architectures.","PeriodicalId":227076,"journal":{"name":"Companion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive Computing Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards A Visual Programming Tool to Create Deep Learning Models\",\"authors\":\"Tommaso Calò, Luigi De Russis\",\"doi\":\"10.1145/3596454.3597181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning (DL) developers come from different backgrounds, e.g., medicine, genomics, finance, and computer science. To create a DL model, they must learn and use high-level programming languages (e.g., Python), thus needing to handle related setups and solve programming errors. This paper presents DeepBlocks, a visual programming tool that allows DL developers to design, train, and evaluate models without relying on specific programming languages. DeepBlocks works by building on the typical model structure: a sequence of learnable functions whose arrangement defines the specific characteristics of the model. We derived DeepBlocks’ design goals from a 5-participants formative interview, and we validated the first implementation of the tool through a typical use case. Results are promising and show that developers could visually design complex DL architectures.\",\"PeriodicalId\":227076,\"journal\":{\"name\":\"Companion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive Computing Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3596454.3597181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3596454.3597181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)开发人员来自不同的背景,例如医学、基因组学、金融和计算机科学。为了创建DL模型,他们必须学习和使用高级编程语言(例如Python),因此需要处理相关设置并解决编程错误。本文介绍了DeepBlocks,这是一种可视化编程工具,允许深度学习开发人员在不依赖特定编程语言的情况下设计、训练和评估模型。DeepBlocks的工作原理是建立在典型的模型结构上:一系列可学习的函数,其排列定义了模型的特定特征。我们从一个5人参与的形成性访谈中得出了DeepBlocks的设计目标,并通过一个典型的用例验证了该工具的第一个实现。结果是有希望的,并表明开发人员可以可视化地设计复杂的深度学习架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards A Visual Programming Tool to Create Deep Learning Models
Deep Learning (DL) developers come from different backgrounds, e.g., medicine, genomics, finance, and computer science. To create a DL model, they must learn and use high-level programming languages (e.g., Python), thus needing to handle related setups and solve programming errors. This paper presents DeepBlocks, a visual programming tool that allows DL developers to design, train, and evaluate models without relying on specific programming languages. DeepBlocks works by building on the typical model structure: a sequence of learnable functions whose arrangement defines the specific characteristics of the model. We derived DeepBlocks’ design goals from a 5-participants formative interview, and we validated the first implementation of the tool through a typical use case. Results are promising and show that developers could visually design complex DL architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信