{"title":"创建深度学习模型的可视化编程工具","authors":"Tommaso Calò, Luigi De Russis","doi":"10.1145/3596454.3597181","DOIUrl":null,"url":null,"abstract":"Deep Learning (DL) developers come from different backgrounds, e.g., medicine, genomics, finance, and computer science. To create a DL model, they must learn and use high-level programming languages (e.g., Python), thus needing to handle related setups and solve programming errors. This paper presents DeepBlocks, a visual programming tool that allows DL developers to design, train, and evaluate models without relying on specific programming languages. DeepBlocks works by building on the typical model structure: a sequence of learnable functions whose arrangement defines the specific characteristics of the model. We derived DeepBlocks’ design goals from a 5-participants formative interview, and we validated the first implementation of the tool through a typical use case. Results are promising and show that developers could visually design complex DL architectures.","PeriodicalId":227076,"journal":{"name":"Companion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive Computing Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards A Visual Programming Tool to Create Deep Learning Models\",\"authors\":\"Tommaso Calò, Luigi De Russis\",\"doi\":\"10.1145/3596454.3597181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning (DL) developers come from different backgrounds, e.g., medicine, genomics, finance, and computer science. To create a DL model, they must learn and use high-level programming languages (e.g., Python), thus needing to handle related setups and solve programming errors. This paper presents DeepBlocks, a visual programming tool that allows DL developers to design, train, and evaluate models without relying on specific programming languages. DeepBlocks works by building on the typical model structure: a sequence of learnable functions whose arrangement defines the specific characteristics of the model. We derived DeepBlocks’ design goals from a 5-participants formative interview, and we validated the first implementation of the tool through a typical use case. Results are promising and show that developers could visually design complex DL architectures.\",\"PeriodicalId\":227076,\"journal\":{\"name\":\"Companion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive Computing Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3596454.3597181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3596454.3597181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards A Visual Programming Tool to Create Deep Learning Models
Deep Learning (DL) developers come from different backgrounds, e.g., medicine, genomics, finance, and computer science. To create a DL model, they must learn and use high-level programming languages (e.g., Python), thus needing to handle related setups and solve programming errors. This paper presents DeepBlocks, a visual programming tool that allows DL developers to design, train, and evaluate models without relying on specific programming languages. DeepBlocks works by building on the typical model structure: a sequence of learnable functions whose arrangement defines the specific characteristics of the model. We derived DeepBlocks’ design goals from a 5-participants formative interview, and we validated the first implementation of the tool through a typical use case. Results are promising and show that developers could visually design complex DL architectures.