基于情境情境识别的智能家居用户反馈评估

A. Alhamoud, Pei Xu, F. Englert, Philipp Scholl, T. Nguyen, Doreen Böhnstedt, R. Steinmetz
{"title":"基于情境情境识别的智能家居用户反馈评估","authors":"A. Alhamoud, Pei Xu, F. Englert, Philipp Scholl, T. Nguyen, Doreen Böhnstedt, R. Steinmetz","doi":"10.1109/PERCOMW.2015.7133987","DOIUrl":null,"url":null,"abstract":"In the recent years, smart home projects started to gain great attention from academic as well as industrial communities. However, an essential challenge that all smart home ideas face is the provision of the ground truth i.e. the labeled training data required to train the machine learning algorithms which achieve the smartness of the smart home. Another challenging task is to evaluate the correctness of the collected ground truth so that we can be sure that we train the system with correct data which represents the reality. In order to build a smart home which is interactive and adaptable to the behavior and preferences of its inhabitants, we need to have comprehensive information about the everyday behavior and preferences of the inhabitants of the smart home. This comprehensive information which needs to be collected represents the ground truth in the context of our smart home research. Many technologies have been utilized in order to collect this information. In this paper, we present our approach for collecting the ground truth in smart homes in a nonintrusive way. More importantly, we present our methodology for evaluating the correctness of the collected ground truth.","PeriodicalId":180959,"journal":{"name":"2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation of user feedback in smart home for situational context identification\",\"authors\":\"A. Alhamoud, Pei Xu, F. Englert, Philipp Scholl, T. Nguyen, Doreen Böhnstedt, R. Steinmetz\",\"doi\":\"10.1109/PERCOMW.2015.7133987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the recent years, smart home projects started to gain great attention from academic as well as industrial communities. However, an essential challenge that all smart home ideas face is the provision of the ground truth i.e. the labeled training data required to train the machine learning algorithms which achieve the smartness of the smart home. Another challenging task is to evaluate the correctness of the collected ground truth so that we can be sure that we train the system with correct data which represents the reality. In order to build a smart home which is interactive and adaptable to the behavior and preferences of its inhabitants, we need to have comprehensive information about the everyday behavior and preferences of the inhabitants of the smart home. This comprehensive information which needs to be collected represents the ground truth in the context of our smart home research. Many technologies have been utilized in order to collect this information. In this paper, we present our approach for collecting the ground truth in smart homes in a nonintrusive way. More importantly, we present our methodology for evaluating the correctness of the collected ground truth.\",\"PeriodicalId\":180959,\"journal\":{\"name\":\"2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2015.7133987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2015.7133987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,智能家居项目开始受到学术界和工业界的高度关注。然而,所有智能家居理念面临的一个基本挑战是提供基础事实,即训练实现智能家居智能的机器学习算法所需的标记训练数据。另一个具有挑战性的任务是评估收集到的地面事实的正确性,以便我们可以确保我们用代表现实的正确数据训练系统。为了构建一个具有交互性和适应性的智能家居,我们需要对智能家居中居民的日常行为和偏好有全面的了解。这些需要收集的综合信息代表了我们智能家居研究背景下的基本事实。为了收集这些信息,已经使用了许多技术。在本文中,我们提出了以非侵入式方式在智能家居中收集地面真相的方法。更重要的是,我们提出了评估收集到的事实的正确性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of user feedback in smart home for situational context identification
In the recent years, smart home projects started to gain great attention from academic as well as industrial communities. However, an essential challenge that all smart home ideas face is the provision of the ground truth i.e. the labeled training data required to train the machine learning algorithms which achieve the smartness of the smart home. Another challenging task is to evaluate the correctness of the collected ground truth so that we can be sure that we train the system with correct data which represents the reality. In order to build a smart home which is interactive and adaptable to the behavior and preferences of its inhabitants, we need to have comprehensive information about the everyday behavior and preferences of the inhabitants of the smart home. This comprehensive information which needs to be collected represents the ground truth in the context of our smart home research. Many technologies have been utilized in order to collect this information. In this paper, we present our approach for collecting the ground truth in smart homes in a nonintrusive way. More importantly, we present our methodology for evaluating the correctness of the collected ground truth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信