图像去雾和去雾的选择性注意网络

Xiao Liang, Runde Li, Jinhui Tang
{"title":"图像去雾和去雾的选择性注意网络","authors":"Xiao Liang, Runde Li, Jinhui Tang","doi":"10.1145/3338533.3366688","DOIUrl":null,"url":null,"abstract":"Image dehazing and deraining are import low-level compute vision tasks. In this paper, we propose a novel method named Selective Attention Network (SAN) to solve these two problems. Due to the density of haze and directions of rain streaks are complex and non-uniform, SAN adopts the channel-wise attention and spatial-channel attention to remove rain streaks and haze both in globally and locally. To better capture various of rain and hazy details, we propose a Selective Attention Module(SAM) to re-scale the channel-wise attention and spatial-channel attention instead of simple element-wise summation. In addition, we conduct ablation studies to validate the effectiveness of the each module of SAN. Extensive experimental results on synthetic and real-world datasets show that SAN performs favorably against state-of-the-art methods.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Selective Attention Network for Image Dehazing and Deraining\",\"authors\":\"Xiao Liang, Runde Li, Jinhui Tang\",\"doi\":\"10.1145/3338533.3366688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image dehazing and deraining are import low-level compute vision tasks. In this paper, we propose a novel method named Selective Attention Network (SAN) to solve these two problems. Due to the density of haze and directions of rain streaks are complex and non-uniform, SAN adopts the channel-wise attention and spatial-channel attention to remove rain streaks and haze both in globally and locally. To better capture various of rain and hazy details, we propose a Selective Attention Module(SAM) to re-scale the channel-wise attention and spatial-channel attention instead of simple element-wise summation. In addition, we conduct ablation studies to validate the effectiveness of the each module of SAN. Extensive experimental results on synthetic and real-world datasets show that SAN performs favorably against state-of-the-art methods.\",\"PeriodicalId\":273086,\"journal\":{\"name\":\"Proceedings of the ACM Multimedia Asia\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338533.3366688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

图像去雾和去噪是重要的底层计算视觉任务。本文提出了一种新的方法——选择性注意网络(SAN)来解决这两个问题。由于雾霾的密度和雨条的方向复杂且不均匀,SAN采用通道关注和空间通道关注,从全局和局部两方面去除雨条和雾霾。为了更好地捕捉降雨和雾霾的各种细节,我们提出了一个选择性注意模块(SAM)来重新缩放通道注意和空间通道注意,而不是简单的元素注意求和。此外,我们还进行了消融研究,以验证SAN的每个模块的有效性。在合成和真实世界数据集上的广泛实验结果表明,SAN优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selective Attention Network for Image Dehazing and Deraining
Image dehazing and deraining are import low-level compute vision tasks. In this paper, we propose a novel method named Selective Attention Network (SAN) to solve these two problems. Due to the density of haze and directions of rain streaks are complex and non-uniform, SAN adopts the channel-wise attention and spatial-channel attention to remove rain streaks and haze both in globally and locally. To better capture various of rain and hazy details, we propose a Selective Attention Module(SAM) to re-scale the channel-wise attention and spatial-channel attention instead of simple element-wise summation. In addition, we conduct ablation studies to validate the effectiveness of the each module of SAN. Extensive experimental results on synthetic and real-world datasets show that SAN performs favorably against state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信