基于神经-模糊混合系统的配电故障原因识别

M. Chow, J. P. Thrower, L. Taylor
{"title":"基于神经-模糊混合系统的配电故障原因识别","authors":"M. Chow, J. P. Thrower, L. Taylor","doi":"10.1109/ANN.1993.264310","DOIUrl":null,"url":null,"abstract":"Faults are going to occur in most power distribution systems. It is sometimes critical to know the cause of the faults as soon they occur so that appropriate action can be taken, fast and efficiently, in order to reduce the cost of distribution system preparation and to increase the security of the power system. Recently, artificial neural networks have been successfully used to recognize the causes of sustained faults in power distribution systems, by using the fault current information collected for each outage. Here, the authors describe a neural-fuzzy hybrid system to identify the causes of temporary faults as well as sustained faults. The generalization ability of the hybrid fault identification system with respect to different system configurations is analyzed and discussed in the paper.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural-fuzzy hybrid system for distribution fault causes identification\",\"authors\":\"M. Chow, J. P. Thrower, L. Taylor\",\"doi\":\"10.1109/ANN.1993.264310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Faults are going to occur in most power distribution systems. It is sometimes critical to know the cause of the faults as soon they occur so that appropriate action can be taken, fast and efficiently, in order to reduce the cost of distribution system preparation and to increase the security of the power system. Recently, artificial neural networks have been successfully used to recognize the causes of sustained faults in power distribution systems, by using the fault current information collected for each outage. Here, the authors describe a neural-fuzzy hybrid system to identify the causes of temporary faults as well as sustained faults. The generalization ability of the hybrid fault identification system with respect to different system configurations is analyzed and discussed in the paper.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

大多数配电系统都会发生故障。为了降低配电系统的准备成本,提高电力系统的安全性,及早了解故障发生的原因,以便快速有效地采取适当的措施是至关重要的。近年来,人工神经网络已被成功地用于识别配电系统中持续故障的原因,该方法利用每次停电时收集的故障电流信息。在这里,作者描述了一个神经-模糊混合系统来识别暂时故障和持续故障的原因。分析和讨论了混合故障识别系统在不同系统结构下的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural-fuzzy hybrid system for distribution fault causes identification
Faults are going to occur in most power distribution systems. It is sometimes critical to know the cause of the faults as soon they occur so that appropriate action can be taken, fast and efficiently, in order to reduce the cost of distribution system preparation and to increase the security of the power system. Recently, artificial neural networks have been successfully used to recognize the causes of sustained faults in power distribution systems, by using the fault current information collected for each outage. Here, the authors describe a neural-fuzzy hybrid system to identify the causes of temporary faults as well as sustained faults. The generalization ability of the hybrid fault identification system with respect to different system configurations is analyzed and discussed in the paper.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信