面向移动直播业务的分布式视频分析

Yuanqi Chen, Yongjie Guan, Tao Han
{"title":"面向移动直播业务的分布式视频分析","authors":"Yuanqi Chen, Yongjie Guan, Tao Han","doi":"10.1109/WCNC45663.2020.9120783","DOIUrl":null,"url":null,"abstract":"While webcast platforms on mobile devices are becoming more and more prevalent, inspection for irregularities is getting harder and harder. To solve this problem, the convolution neural network(CNN) has been applied to recognize or detect specified objections in pictures and videos. However, when supervising large platforms, it isn’t very easy to collect mountain piles of video data and send them to the computation center. Other problems like long time delay and the high computational burden will reduce system performance, especially when dealing with data from live streams. This paper presents a method to coordinate mobile devices with remote servers(computers or embedded systems) to achieve real-time monitoring of live streams. The system can make use of computational capacity on mobile devices and reduce the cost of sending data while guaranteeing accuracy for supervision.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Video Analysis for Mobile Live Broadcasting Services\",\"authors\":\"Yuanqi Chen, Yongjie Guan, Tao Han\",\"doi\":\"10.1109/WCNC45663.2020.9120783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While webcast platforms on mobile devices are becoming more and more prevalent, inspection for irregularities is getting harder and harder. To solve this problem, the convolution neural network(CNN) has been applied to recognize or detect specified objections in pictures and videos. However, when supervising large platforms, it isn’t very easy to collect mountain piles of video data and send them to the computation center. Other problems like long time delay and the high computational burden will reduce system performance, especially when dealing with data from live streams. This paper presents a method to coordinate mobile devices with remote servers(computers or embedded systems) to achieve real-time monitoring of live streams. The system can make use of computational capacity on mobile devices and reduce the cost of sending data while guaranteeing accuracy for supervision.\",\"PeriodicalId\":415064,\"journal\":{\"name\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC45663.2020.9120783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着移动设备上的网络直播平台越来越普及,对违规行为的检查也越来越难。为了解决这一问题,卷积神经网络(CNN)被用于识别或检测图像和视频中的特定异议。然而,在对大型平台进行监控时,要收集海量的视频数据并将其发送到计算中心并不是一件容易的事情。其他问题,如长时间延迟和高计算负担,将降低系统性能,特别是在处理来自实时流的数据时。本文提出了一种协调移动设备与远程服务器(计算机或嵌入式系统)的方法,以实现对直播流的实时监控。该系统可以充分利用移动设备的计算能力,在保证监控准确性的同时,降低数据发送成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Video Analysis for Mobile Live Broadcasting Services
While webcast platforms on mobile devices are becoming more and more prevalent, inspection for irregularities is getting harder and harder. To solve this problem, the convolution neural network(CNN) has been applied to recognize or detect specified objections in pictures and videos. However, when supervising large platforms, it isn’t very easy to collect mountain piles of video data and send them to the computation center. Other problems like long time delay and the high computational burden will reduce system performance, especially when dealing with data from live streams. This paper presents a method to coordinate mobile devices with remote servers(computers or embedded systems) to achieve real-time monitoring of live streams. The system can make use of computational capacity on mobile devices and reduce the cost of sending data while guaranteeing accuracy for supervision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信