基于频率的时域有限差分法计算人体非均匀模型的感应电流

O. Gandhi, J. Chen, C. Furse
{"title":"基于频率的时域有限差分法计算人体非均匀模型的感应电流","authors":"O. Gandhi, J. Chen, C. Furse","doi":"10.1109/MWSYM.1992.188236","DOIUrl":null,"url":null,"abstract":"A weakness of the FDTD (finite-difference, time-domain) method is that dispersion of the dielectric properties of the scattering/absorption body is often ignored and frequency-independent properties are generally taken. While this is not a disadvantage for continuous-wave or narrowband irradiation, the results thus obtained may be higher erroneous for short pulses where ultrawide bandwidths are involved. A differential equation approach was developed. It can be used for general dispersive media for which in *( omega ) and mu *( omega ) may be expressible in terms of ration functions, or for human tissues where multiterm Debye relaxation equations must generally be used. The method is illustrated by means of one- and three-dimensional examples of media for which in *( omega ) is given by a multiterm Debye equation and for a dispersive model of the human body.<<ETX>>","PeriodicalId":165665,"journal":{"name":"1992 IEEE Microwave Symposium Digest MTT-S","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A frequency-dependent FDTD method for induced-current calculations for a heterogeneous model of the human body\",\"authors\":\"O. Gandhi, J. Chen, C. Furse\",\"doi\":\"10.1109/MWSYM.1992.188236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A weakness of the FDTD (finite-difference, time-domain) method is that dispersion of the dielectric properties of the scattering/absorption body is often ignored and frequency-independent properties are generally taken. While this is not a disadvantage for continuous-wave or narrowband irradiation, the results thus obtained may be higher erroneous for short pulses where ultrawide bandwidths are involved. A differential equation approach was developed. It can be used for general dispersive media for which in *( omega ) and mu *( omega ) may be expressible in terms of ration functions, or for human tissues where multiterm Debye relaxation equations must generally be used. The method is illustrated by means of one- and three-dimensional examples of media for which in *( omega ) is given by a multiterm Debye equation and for a dispersive model of the human body.<<ETX>>\",\"PeriodicalId\":165665,\"journal\":{\"name\":\"1992 IEEE Microwave Symposium Digest MTT-S\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1992 IEEE Microwave Symposium Digest MTT-S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.1992.188236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 IEEE Microwave Symposium Digest MTT-S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.1992.188236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

时域有限差分法的一个缺点是往往忽略散射/吸收体的介电特性的色散,而通常采用与频率无关的特性。虽然这对于连续波或窄带辐射并不是一个缺点,但对于涉及超宽带宽的短脉冲,由此获得的结果可能会有更高的误差。提出了一种微分方程方法。它可以用于一般色散介质,其中*()和*()可以用比例函数表示,或者用于必须通常使用多项德拜弛豫方程的人体组织。该方法通过一维和三维介质的例子加以说明,其中*(ω)由多项德拜方程给出,并用于人体的色散模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A frequency-dependent FDTD method for induced-current calculations for a heterogeneous model of the human body
A weakness of the FDTD (finite-difference, time-domain) method is that dispersion of the dielectric properties of the scattering/absorption body is often ignored and frequency-independent properties are generally taken. While this is not a disadvantage for continuous-wave or narrowband irradiation, the results thus obtained may be higher erroneous for short pulses where ultrawide bandwidths are involved. A differential equation approach was developed. It can be used for general dispersive media for which in *( omega ) and mu *( omega ) may be expressible in terms of ration functions, or for human tissues where multiterm Debye relaxation equations must generally be used. The method is illustrated by means of one- and three-dimensional examples of media for which in *( omega ) is given by a multiterm Debye equation and for a dispersive model of the human body.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信