钢-混凝土单跨桥梁重建方法的有效性比较

V. Popov, Oleksandr V. Voitsehivskiy, Oleg V. Stinskiy
{"title":"钢-混凝土单跨桥梁重建方法的有效性比较","authors":"V. Popov, Oleksandr V. Voitsehivskiy, Oleg V. Stinskiy","doi":"10.31649/2311-1429-2023-1-19-26","DOIUrl":null,"url":null,"abstract":"The paper contains developed the method of strengthening steel-reinforced concrete single-span bridge structures that have undergone wear and tear due to long-term operation and require expansion. Have been described the structural solution and the principle of operation under load of the existing typical steel-reinforced concrete single-span bridges. As an example have been considered real emergency bridge structure in the village of Dashiv of the Haysyn district of the Vinnytsia region, in need of urgent reconstruction. Have been described in detail its main structural elements and technical condition. Have been shown possible rational ways of expanding and strengthening the structure in two variants. Variant 1 – reinforcement of existing steel and reinforced concrete structures with partial blocking of road traffic. Variant 2 – replacement of the span structure with a complete shutdown of the bridge for the duration of the construction and installation works. Have been developed basic constructive schemes for the reconstruction of the structure for the first and second variants. Have been described the technological sequence of strengthening the bridge structure according to both mentioned methods, have been analyzed the advantages and disadvantages and have been estimated the cost indicators of the reconstruction of each of the proposed variants. Have been proven that the strengthening method (variant 1) is more appropriate if it is necessary to partially operate the structure during construction and installation works. This method makes it possible to restore the design load-bearing capacity of the bridge structure with the provision of modern dimensional requirements and traffic safety requirements for less cost. The method of complete replacement of the span structure (variant 2), despite the higher cost, should be preferred in all other cases according to dynamics of constant growth of traffic flow in our country. With variant 2, it is possible to achieve not only the required dimensions, but also higher load-bearing characteristics of the bridge structure in a shorter period of time. The reliability and efficiency of each of the methods is confirmed by the corresponding strength calculations.","PeriodicalId":221366,"journal":{"name":"Modern technology, materials and design in construction","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARISON OF THE EFFICIENCY OF RECONSTRUCTION METHODS OF STEEL-CONCRET SINGLE-SPAN BRIDGES\",\"authors\":\"V. Popov, Oleksandr V. Voitsehivskiy, Oleg V. Stinskiy\",\"doi\":\"10.31649/2311-1429-2023-1-19-26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper contains developed the method of strengthening steel-reinforced concrete single-span bridge structures that have undergone wear and tear due to long-term operation and require expansion. Have been described the structural solution and the principle of operation under load of the existing typical steel-reinforced concrete single-span bridges. As an example have been considered real emergency bridge structure in the village of Dashiv of the Haysyn district of the Vinnytsia region, in need of urgent reconstruction. Have been described in detail its main structural elements and technical condition. Have been shown possible rational ways of expanding and strengthening the structure in two variants. Variant 1 – reinforcement of existing steel and reinforced concrete structures with partial blocking of road traffic. Variant 2 – replacement of the span structure with a complete shutdown of the bridge for the duration of the construction and installation works. Have been developed basic constructive schemes for the reconstruction of the structure for the first and second variants. Have been described the technological sequence of strengthening the bridge structure according to both mentioned methods, have been analyzed the advantages and disadvantages and have been estimated the cost indicators of the reconstruction of each of the proposed variants. Have been proven that the strengthening method (variant 1) is more appropriate if it is necessary to partially operate the structure during construction and installation works. This method makes it possible to restore the design load-bearing capacity of the bridge structure with the provision of modern dimensional requirements and traffic safety requirements for less cost. The method of complete replacement of the span structure (variant 2), despite the higher cost, should be preferred in all other cases according to dynamics of constant growth of traffic flow in our country. With variant 2, it is possible to achieve not only the required dimensions, but also higher load-bearing characteristics of the bridge structure in a shorter period of time. The reliability and efficiency of each of the methods is confirmed by the corresponding strength calculations.\",\"PeriodicalId\":221366,\"journal\":{\"name\":\"Modern technology, materials and design in construction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern technology, materials and design in construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31649/2311-1429-2023-1-19-26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern technology, materials and design in construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31649/2311-1429-2023-1-19-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了钢-钢筋混凝土单跨桥梁结构因长期使用而发生磨损,需要扩建的加固方法。介绍了既有典型钢-钢筋混凝土单跨桥梁的结构方案和荷载作用原理。作为一个例子,在文尼察地区海辛区的Dashiv村被认为是真正的紧急桥梁结构,需要紧急重建。详细介绍了其主要结构元件和技术条件。提出了两种结构扩展和强化的合理方法。变型1 -现有钢筋和钢筋混凝土结构的加固,部分阻断道路交通。变型2 -在施工和安装工程期间完全关闭桥梁,以替换跨结构。已经为第一和第二变体的结构重建制定了基本的构造方案。描述了两种方法加固桥梁结构的工艺顺序,分析了两种方法的优缺点,并对每种方案的改造成本指标进行了估算。经实践证明,如果在施工安装过程中需要对结构进行部分操作,则采用加固方法(变型1)更为合适。该方法可以在满足现代尺寸要求和交通安全要求的前提下,以较低的成本恢复桥梁结构的设计承载能力。根据我国交通流量不断增长的动态,在其他情况下,应优先采用完全替换跨结构(变型2)的方法,尽管成本较高。采用变型2,不仅可以达到要求的尺寸,而且可以在更短的时间内实现更高的桥梁结构承载特性。通过相应的强度计算,验证了每种方法的可靠性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPARISON OF THE EFFICIENCY OF RECONSTRUCTION METHODS OF STEEL-CONCRET SINGLE-SPAN BRIDGES
The paper contains developed the method of strengthening steel-reinforced concrete single-span bridge structures that have undergone wear and tear due to long-term operation and require expansion. Have been described the structural solution and the principle of operation under load of the existing typical steel-reinforced concrete single-span bridges. As an example have been considered real emergency bridge structure in the village of Dashiv of the Haysyn district of the Vinnytsia region, in need of urgent reconstruction. Have been described in detail its main structural elements and technical condition. Have been shown possible rational ways of expanding and strengthening the structure in two variants. Variant 1 – reinforcement of existing steel and reinforced concrete structures with partial blocking of road traffic. Variant 2 – replacement of the span structure with a complete shutdown of the bridge for the duration of the construction and installation works. Have been developed basic constructive schemes for the reconstruction of the structure for the first and second variants. Have been described the technological sequence of strengthening the bridge structure according to both mentioned methods, have been analyzed the advantages and disadvantages and have been estimated the cost indicators of the reconstruction of each of the proposed variants. Have been proven that the strengthening method (variant 1) is more appropriate if it is necessary to partially operate the structure during construction and installation works. This method makes it possible to restore the design load-bearing capacity of the bridge structure with the provision of modern dimensional requirements and traffic safety requirements for less cost. The method of complete replacement of the span structure (variant 2), despite the higher cost, should be preferred in all other cases according to dynamics of constant growth of traffic flow in our country. With variant 2, it is possible to achieve not only the required dimensions, but also higher load-bearing characteristics of the bridge structure in a shorter period of time. The reliability and efficiency of each of the methods is confirmed by the corresponding strength calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信