基于FSTVM的优化K-Means算法

Yanqiu Chen, Peili Sun
{"title":"基于FSTVM的优化K-Means算法","authors":"Yanqiu Chen, Peili Sun","doi":"10.1109/ICVRIS.2018.00095","DOIUrl":null,"url":null,"abstract":"Aiming at the text document similarity and initial center point problems of K-means algorithm, a new model is proposed, in which used a new method of Frequency-Sorted Term Vector Model(FSTVM) to represent a document, and for reducing the dimension of a document designed an automatic method to filter commonly used words, and redesigned the similarity calculation formula and optimization algorithm for the initial center. Compared with the traditional algorithms, the new proposed algorithm can get initial centers with higher quality and steadier cluster results, Experimental results prove this clustering algorithm is simple and effective.","PeriodicalId":152317,"journal":{"name":"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Optimized K-Means Algorithm Based on FSTVM\",\"authors\":\"Yanqiu Chen, Peili Sun\",\"doi\":\"10.1109/ICVRIS.2018.00095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the text document similarity and initial center point problems of K-means algorithm, a new model is proposed, in which used a new method of Frequency-Sorted Term Vector Model(FSTVM) to represent a document, and for reducing the dimension of a document designed an automatic method to filter commonly used words, and redesigned the similarity calculation formula and optimization algorithm for the initial center. Compared with the traditional algorithms, the new proposed algorithm can get initial centers with higher quality and steadier cluster results, Experimental results prove this clustering algorithm is simple and effective.\",\"PeriodicalId\":152317,\"journal\":{\"name\":\"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRIS.2018.00095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS.2018.00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对K-means算法中文本文档的相似度和初始中心点问题,提出了一种新的模型,该模型采用频率排序词向量模型(FSTVM)的新方法来表示文档,针对文档的降维设计了常用词的自动过滤方法,并重新设计了相似度计算公式和初始中心点的优化算法。与传统聚类算法相比,该算法能获得质量更高的初始中心,聚类结果更稳定,实验结果证明该聚类算法简单有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimized K-Means Algorithm Based on FSTVM
Aiming at the text document similarity and initial center point problems of K-means algorithm, a new model is proposed, in which used a new method of Frequency-Sorted Term Vector Model(FSTVM) to represent a document, and for reducing the dimension of a document designed an automatic method to filter commonly used words, and redesigned the similarity calculation formula and optimization algorithm for the initial center. Compared with the traditional algorithms, the new proposed algorithm can get initial centers with higher quality and steadier cluster results, Experimental results prove this clustering algorithm is simple and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信