胃癌数字编码基因表达的组合逻辑网络

Sungjin Park, S. Nam
{"title":"胃癌数字编码基因表达的组合逻辑网络","authors":"Sungjin Park, S. Nam","doi":"10.1109/BIBM.2016.7822788","DOIUrl":null,"url":null,"abstract":"In general, Boolean networks have been addressed in time-series datasets. However, in the recent field of next-generation sequencing-based cancer genomics, cross-sectional data sets having enormous numbers of patients have been accumulated. Here, we deal with representation of cross-sectional datasets using Boolean networks, and specifically, combinational logic network approach. We then applied the approach to a real cancer patient dataset, demonstrating the feasibility of using Boolean networks in graphical representation of cross-sectional datasets.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinational logic network for digitally coded gene expression of gastric cancer\",\"authors\":\"Sungjin Park, S. Nam\",\"doi\":\"10.1109/BIBM.2016.7822788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general, Boolean networks have been addressed in time-series datasets. However, in the recent field of next-generation sequencing-based cancer genomics, cross-sectional data sets having enormous numbers of patients have been accumulated. Here, we deal with representation of cross-sectional datasets using Boolean networks, and specifically, combinational logic network approach. We then applied the approach to a real cancer patient dataset, demonstrating the feasibility of using Boolean networks in graphical representation of cross-sectional datasets.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一般来说,布尔网络已经在时间序列数据集中得到了解决。然而,在最近的基于下一代测序的癌症基因组学领域,已经积累了大量患者的横断面数据集。在这里,我们使用布尔网络,特别是组合逻辑网络方法来处理横截面数据集的表示。然后,我们将该方法应用于一个真实的癌症患者数据集,证明了在横截面数据集的图形表示中使用布尔网络的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinational logic network for digitally coded gene expression of gastric cancer
In general, Boolean networks have been addressed in time-series datasets. However, in the recent field of next-generation sequencing-based cancer genomics, cross-sectional data sets having enormous numbers of patients have been accumulated. Here, we deal with representation of cross-sectional datasets using Boolean networks, and specifically, combinational logic network approach. We then applied the approach to a real cancer patient dataset, demonstrating the feasibility of using Boolean networks in graphical representation of cross-sectional datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信