探索性数据分析的空间社会网络可视化

W. Luo, A. MacEachren, Peifeng Yin, F. Hardisty
{"title":"探索性数据分析的空间社会网络可视化","authors":"W. Luo, A. MacEachren, Peifeng Yin, F. Hardisty","doi":"10.1145/2063212.2063216","DOIUrl":null,"url":null,"abstract":"There has been considerable interest in applying social network analysis methods to geographically embedded networks such as population migration and international trade. However, research is hampered by a lack of support for exploratory spatial-social network analysis in integrated tools. To bridge the gap, this research introduces a spatial-social network visualization tool, the GeoSocialApp, that supports the exploration of spatial-social networks among network, geographical, and attribute spaces. It also supports exploration of network attributes from community-level (clustering) to individual-level (network node measures). Using an international trade case study, this research shows that mixed methods --- computational and visual --- can enable discovery of complex patterns in large spatial-social network datasets in an effective and efficient way.","PeriodicalId":107369,"journal":{"name":"Workshop on Location-based Social Networks","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Spatial-social network visualization for exploratory data analysis\",\"authors\":\"W. Luo, A. MacEachren, Peifeng Yin, F. Hardisty\",\"doi\":\"10.1145/2063212.2063216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been considerable interest in applying social network analysis methods to geographically embedded networks such as population migration and international trade. However, research is hampered by a lack of support for exploratory spatial-social network analysis in integrated tools. To bridge the gap, this research introduces a spatial-social network visualization tool, the GeoSocialApp, that supports the exploration of spatial-social networks among network, geographical, and attribute spaces. It also supports exploration of network attributes from community-level (clustering) to individual-level (network node measures). Using an international trade case study, this research shows that mixed methods --- computational and visual --- can enable discovery of complex patterns in large spatial-social network datasets in an effective and efficient way.\",\"PeriodicalId\":107369,\"journal\":{\"name\":\"Workshop on Location-based Social Networks\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Location-based Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063212.2063216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Location-based Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063212.2063216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

将社会网络分析方法应用于地理嵌入网络,如人口迁移和国际贸易,已经引起了相当大的兴趣。然而,由于缺乏对探索性空间-社会网络综合分析工具的支持,研究受到了阻碍。为了弥补这一差距,本研究引入了一个空间社会网络可视化工具,GeoSocialApp,它支持在网络、地理和属性空间之间探索空间社会网络。它还支持从社区级(聚类)到个人级(网络节点度量)的网络属性探索。通过一个国际贸易案例研究,本研究表明,混合方法——计算和视觉——可以有效和高效地发现大型空间社会网络数据集中的复杂模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial-social network visualization for exploratory data analysis
There has been considerable interest in applying social network analysis methods to geographically embedded networks such as population migration and international trade. However, research is hampered by a lack of support for exploratory spatial-social network analysis in integrated tools. To bridge the gap, this research introduces a spatial-social network visualization tool, the GeoSocialApp, that supports the exploration of spatial-social networks among network, geographical, and attribute spaces. It also supports exploration of network attributes from community-level (clustering) to individual-level (network node measures). Using an international trade case study, this research shows that mixed methods --- computational and visual --- can enable discovery of complex patterns in large spatial-social network datasets in an effective and efficient way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信