拟循环单步多数逻辑可译码的迭代阈值译码

Karim Rkizat, M. Lahmer, M. Belkasmi
{"title":"拟循环单步多数逻辑可译码的迭代阈值译码","authors":"Karim Rkizat, M. Lahmer, M. Belkasmi","doi":"10.1109/WICT.2015.7489656","DOIUrl":null,"url":null,"abstract":"This paper presents a new class of Quasi-Cyclic One Step Majority logic codes of 1/2 rate constructed from perfect difference set. Theses codes can be encoded with low complexity, and perform very well when decoded with the Iterative threshold decoding algorithm. Much of these codes is a subfamily of the LDPC codes and can be decoded using belief propagation algorithm. A comparison between our results and those for LDPC code in terms of BER performance are presented.","PeriodicalId":246557,"journal":{"name":"2015 5th World Congress on Information and Communication Technologies (WICT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Iterative threshold decoding of Quasi-Cyclic One Step Majority logic decodable codes\",\"authors\":\"Karim Rkizat, M. Lahmer, M. Belkasmi\",\"doi\":\"10.1109/WICT.2015.7489656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new class of Quasi-Cyclic One Step Majority logic codes of 1/2 rate constructed from perfect difference set. Theses codes can be encoded with low complexity, and perform very well when decoded with the Iterative threshold decoding algorithm. Much of these codes is a subfamily of the LDPC codes and can be decoded using belief propagation algorithm. A comparison between our results and those for LDPC code in terms of BER performance are presented.\",\"PeriodicalId\":246557,\"journal\":{\"name\":\"2015 5th World Congress on Information and Communication Technologies (WICT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 5th World Congress on Information and Communication Technologies (WICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WICT.2015.7489656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 5th World Congress on Information and Communication Technologies (WICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2015.7489656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文从完全差分集构造了一类新的1/2速率的拟循环一阶多数逻辑码。这些码可以用较低的复杂度进行编码,并且使用迭代阈值译码算法进行译码时表现良好。这些码大多是LDPC码的一个亚族,可以使用信念传播算法进行解码。我们的结果与LDPC码的误码率性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative threshold decoding of Quasi-Cyclic One Step Majority logic decodable codes
This paper presents a new class of Quasi-Cyclic One Step Majority logic codes of 1/2 rate constructed from perfect difference set. Theses codes can be encoded with low complexity, and perform very well when decoded with the Iterative threshold decoding algorithm. Much of these codes is a subfamily of the LDPC codes and can be decoded using belief propagation algorithm. A comparison between our results and those for LDPC code in terms of BER performance are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信