形态丰富的语言之间的翻译:一个阿拉伯语到土耳其语的机器翻译系统

Ilknur Durgar El-Kahlout, E. Bektas, N. S. Erdem, Hamza Kaya
{"title":"形态丰富的语言之间的翻译:一个阿拉伯语到土耳其语的机器翻译系统","authors":"Ilknur Durgar El-Kahlout, E. Bektas, N. S. Erdem, Hamza Kaya","doi":"10.18653/v1/W19-4617","DOIUrl":null,"url":null,"abstract":"This paper introduces the work on building a machine translation system for Arabic-to-Turkish in the news domain. Our work includes collecting parallel datasets in several ways for a new and low-resourced language pair, building baseline systems with state-of-the-art architectures and developing language specific algorithms for better translation. Parallel datasets are mainly collected three different ways; i) translating Arabic texts into Turkish by professional translators, ii) exploiting the web for open-source Arabic-Turkish parallel texts, iii) using back-translation. We per-formed preliminary experiments for Arabic-to-Turkish machine translation with neural(Marian) machine translation tools with a novel morphologically motivated vocabulary reduction method.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Translating Between Morphologically Rich Languages: An Arabic-to-Turkish Machine Translation System\",\"authors\":\"Ilknur Durgar El-Kahlout, E. Bektas, N. S. Erdem, Hamza Kaya\",\"doi\":\"10.18653/v1/W19-4617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the work on building a machine translation system for Arabic-to-Turkish in the news domain. Our work includes collecting parallel datasets in several ways for a new and low-resourced language pair, building baseline systems with state-of-the-art architectures and developing language specific algorithms for better translation. Parallel datasets are mainly collected three different ways; i) translating Arabic texts into Turkish by professional translators, ii) exploiting the web for open-source Arabic-Turkish parallel texts, iii) using back-translation. We per-formed preliminary experiments for Arabic-to-Turkish machine translation with neural(Marian) machine translation tools with a novel morphologically motivated vocabulary reduction method.\",\"PeriodicalId\":268163,\"journal\":{\"name\":\"WANLP@ACL 2019\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WANLP@ACL 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-4617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了在新闻领域建立阿拉伯语到土耳其语机器翻译系统的工作。我们的工作包括以多种方式为新的低资源语言对收集并行数据集,用最先进的架构构建基线系统,以及为更好的翻译开发特定于语言的算法。并行数据集的收集主要有三种不同的方式;i)由专业翻译人员将阿拉伯语文本翻译成土耳其语,ii)利用网络开发开源阿拉伯-土耳其语平行文本,iii)使用反向翻译。本文采用一种新颖的形态学动机词汇缩减方法,利用神经(Marian)机器翻译工具对阿拉伯语到土耳其语的机器翻译进行了初步实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Translating Between Morphologically Rich Languages: An Arabic-to-Turkish Machine Translation System
This paper introduces the work on building a machine translation system for Arabic-to-Turkish in the news domain. Our work includes collecting parallel datasets in several ways for a new and low-resourced language pair, building baseline systems with state-of-the-art architectures and developing language specific algorithms for better translation. Parallel datasets are mainly collected three different ways; i) translating Arabic texts into Turkish by professional translators, ii) exploiting the web for open-source Arabic-Turkish parallel texts, iii) using back-translation. We per-formed preliminary experiments for Arabic-to-Turkish machine translation with neural(Marian) machine translation tools with a novel morphologically motivated vocabulary reduction method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信