基于博弈论的自动驾驶仿人变道决策

P. Hang, Chen Lv, Chao Huang, Yang Xing, Zhongxu Hu, Jiacheng Cai
{"title":"基于博弈论的自动驾驶仿人变道决策","authors":"P. Hang, Chen Lv, Chao Huang, Yang Xing, Zhongxu Hu, Jiacheng Cai","doi":"10.1109/CVCI51460.2020.9338614","DOIUrl":null,"url":null,"abstract":"With the consideration of personalized driving for automated vehicles (AVs), this paper presents a human-like decision making framework for AVs. In the modelling process, the driver model is combined with the vehicle model, which yields the integrated model for the decision-making algorithm design. Three different driving styles, i.e., aggressive, normal, and conservative, are defined for human-like driving modelling. Additionally, motion prediction algorithm is designed with model predictive control (MPC) to advance the effectiveness of the decision-making approach. Furthermore, the decision-making cost function is constructed considering drive safety, ride comfort and travel efficiency, which reflect different driving styles. Based on the decision-making cost function, a noncooperative game theoretic approach is applied to solving the decision-making issue. Finally, the proposed human-like decision making algorithm is evaluated with an overtaking scenario. Testing results indicate different driving styles cause different decision-making results, and the designed algorithm can always make safe and reasonable decisions for AVs.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Human-Like Lane-Change Decision Making for Automated Driving with a Game Theoretic Approach\",\"authors\":\"P. Hang, Chen Lv, Chao Huang, Yang Xing, Zhongxu Hu, Jiacheng Cai\",\"doi\":\"10.1109/CVCI51460.2020.9338614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the consideration of personalized driving for automated vehicles (AVs), this paper presents a human-like decision making framework for AVs. In the modelling process, the driver model is combined with the vehicle model, which yields the integrated model for the decision-making algorithm design. Three different driving styles, i.e., aggressive, normal, and conservative, are defined for human-like driving modelling. Additionally, motion prediction algorithm is designed with model predictive control (MPC) to advance the effectiveness of the decision-making approach. Furthermore, the decision-making cost function is constructed considering drive safety, ride comfort and travel efficiency, which reflect different driving styles. Based on the decision-making cost function, a noncooperative game theoretic approach is applied to solving the decision-making issue. Finally, the proposed human-like decision making algorithm is evaluated with an overtaking scenario. Testing results indicate different driving styles cause different decision-making results, and the designed algorithm can always make safe and reasonable decisions for AVs.\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对自动驾驶汽车的个性化驾驶问题,提出了一种仿人的自动驾驶汽车决策框架。在建模过程中,将驾驶员模型与车辆模型相结合,形成决策算法设计的集成模型。三种不同的驾驶风格,即侵略性,正常和保守,被定义为类人驾驶模型。此外,为了提高决策方法的有效性,还设计了基于模型预测控制(MPC)的运动预测算法。在此基础上,构建了反映不同驾驶风格的驾驶安全性、乘坐舒适性和出行效率的决策成本函数。基于决策成本函数,采用非合作博弈论方法求解决策问题。最后,用超车场景对拟人决策算法进行了评价。测试结果表明,不同的驾驶风格会导致不同的决策结果,所设计的算法总能对自动驾驶汽车做出安全合理的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human-Like Lane-Change Decision Making for Automated Driving with a Game Theoretic Approach
With the consideration of personalized driving for automated vehicles (AVs), this paper presents a human-like decision making framework for AVs. In the modelling process, the driver model is combined with the vehicle model, which yields the integrated model for the decision-making algorithm design. Three different driving styles, i.e., aggressive, normal, and conservative, are defined for human-like driving modelling. Additionally, motion prediction algorithm is designed with model predictive control (MPC) to advance the effectiveness of the decision-making approach. Furthermore, the decision-making cost function is constructed considering drive safety, ride comfort and travel efficiency, which reflect different driving styles. Based on the decision-making cost function, a noncooperative game theoretic approach is applied to solving the decision-making issue. Finally, the proposed human-like decision making algorithm is evaluated with an overtaking scenario. Testing results indicate different driving styles cause different decision-making results, and the designed algorithm can always make safe and reasonable decisions for AVs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信