P. Hang, Chen Lv, Chao Huang, Yang Xing, Zhongxu Hu, Jiacheng Cai
{"title":"基于博弈论的自动驾驶仿人变道决策","authors":"P. Hang, Chen Lv, Chao Huang, Yang Xing, Zhongxu Hu, Jiacheng Cai","doi":"10.1109/CVCI51460.2020.9338614","DOIUrl":null,"url":null,"abstract":"With the consideration of personalized driving for automated vehicles (AVs), this paper presents a human-like decision making framework for AVs. In the modelling process, the driver model is combined with the vehicle model, which yields the integrated model for the decision-making algorithm design. Three different driving styles, i.e., aggressive, normal, and conservative, are defined for human-like driving modelling. Additionally, motion prediction algorithm is designed with model predictive control (MPC) to advance the effectiveness of the decision-making approach. Furthermore, the decision-making cost function is constructed considering drive safety, ride comfort and travel efficiency, which reflect different driving styles. Based on the decision-making cost function, a noncooperative game theoretic approach is applied to solving the decision-making issue. Finally, the proposed human-like decision making algorithm is evaluated with an overtaking scenario. Testing results indicate different driving styles cause different decision-making results, and the designed algorithm can always make safe and reasonable decisions for AVs.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Human-Like Lane-Change Decision Making for Automated Driving with a Game Theoretic Approach\",\"authors\":\"P. Hang, Chen Lv, Chao Huang, Yang Xing, Zhongxu Hu, Jiacheng Cai\",\"doi\":\"10.1109/CVCI51460.2020.9338614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the consideration of personalized driving for automated vehicles (AVs), this paper presents a human-like decision making framework for AVs. In the modelling process, the driver model is combined with the vehicle model, which yields the integrated model for the decision-making algorithm design. Three different driving styles, i.e., aggressive, normal, and conservative, are defined for human-like driving modelling. Additionally, motion prediction algorithm is designed with model predictive control (MPC) to advance the effectiveness of the decision-making approach. Furthermore, the decision-making cost function is constructed considering drive safety, ride comfort and travel efficiency, which reflect different driving styles. Based on the decision-making cost function, a noncooperative game theoretic approach is applied to solving the decision-making issue. Finally, the proposed human-like decision making algorithm is evaluated with an overtaking scenario. Testing results indicate different driving styles cause different decision-making results, and the designed algorithm can always make safe and reasonable decisions for AVs.\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human-Like Lane-Change Decision Making for Automated Driving with a Game Theoretic Approach
With the consideration of personalized driving for automated vehicles (AVs), this paper presents a human-like decision making framework for AVs. In the modelling process, the driver model is combined with the vehicle model, which yields the integrated model for the decision-making algorithm design. Three different driving styles, i.e., aggressive, normal, and conservative, are defined for human-like driving modelling. Additionally, motion prediction algorithm is designed with model predictive control (MPC) to advance the effectiveness of the decision-making approach. Furthermore, the decision-making cost function is constructed considering drive safety, ride comfort and travel efficiency, which reflect different driving styles. Based on the decision-making cost function, a noncooperative game theoretic approach is applied to solving the decision-making issue. Finally, the proposed human-like decision making algorithm is evaluated with an overtaking scenario. Testing results indicate different driving styles cause different decision-making results, and the designed algorithm can always make safe and reasonable decisions for AVs.