A. Short, H. Leligou, M. Papoutsidakis, Efstathios Theocharis
{"title":"使用区块链技术提高联邦学习系统的安全性","authors":"A. Short, H. Leligou, M. Papoutsidakis, Efstathios Theocharis","doi":"10.1109/COMPSAC48688.2020.00-96","DOIUrl":null,"url":null,"abstract":"The potential of Federated Learning (FL) deployment increases rapidly as the number of connected devices increases, the value of artificial intelligence is recognized and networking technologies and edge computing evolves. However, as in any distributed system, a set of security issues arise in FL systems. In this paper, we discuss the use of blockchain technology to address diverse security aspects of FL systems and focus on the model poisoning attack for which we propose a novel Blockchain-based defense scheme. An assessment using data from the MNIST database has shown that the proposed approach, which has been designed to be implemented on blockchain technology, offers significant protection against adversaries attempting model poisoning attacks. The approach adopts a novel algorithm for evaluating the model updates, by verifying each model update separately against a verification dataset, without requiring information about the training dataset size, which is often unavailable or easily falsified.","PeriodicalId":430098,"journal":{"name":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Using Blockchain Technologies to Improve Security in Federated Learning Systems\",\"authors\":\"A. Short, H. Leligou, M. Papoutsidakis, Efstathios Theocharis\",\"doi\":\"10.1109/COMPSAC48688.2020.00-96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of Federated Learning (FL) deployment increases rapidly as the number of connected devices increases, the value of artificial intelligence is recognized and networking technologies and edge computing evolves. However, as in any distributed system, a set of security issues arise in FL systems. In this paper, we discuss the use of blockchain technology to address diverse security aspects of FL systems and focus on the model poisoning attack for which we propose a novel Blockchain-based defense scheme. An assessment using data from the MNIST database has shown that the proposed approach, which has been designed to be implemented on blockchain technology, offers significant protection against adversaries attempting model poisoning attacks. The approach adopts a novel algorithm for evaluating the model updates, by verifying each model update separately against a verification dataset, without requiring information about the training dataset size, which is often unavailable or easily falsified.\",\"PeriodicalId\":430098,\"journal\":{\"name\":\"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC48688.2020.00-96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC48688.2020.00-96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Blockchain Technologies to Improve Security in Federated Learning Systems
The potential of Federated Learning (FL) deployment increases rapidly as the number of connected devices increases, the value of artificial intelligence is recognized and networking technologies and edge computing evolves. However, as in any distributed system, a set of security issues arise in FL systems. In this paper, we discuss the use of blockchain technology to address diverse security aspects of FL systems and focus on the model poisoning attack for which we propose a novel Blockchain-based defense scheme. An assessment using data from the MNIST database has shown that the proposed approach, which has been designed to be implemented on blockchain technology, offers significant protection against adversaries attempting model poisoning attacks. The approach adopts a novel algorithm for evaluating the model updates, by verifying each model update separately against a verification dataset, without requiring information about the training dataset size, which is often unavailable or easily falsified.