{"title":"600W LCC补偿无线电力传输系统的双向控制设计","authors":"A. Pashaei, Emrullah Aydin, M. Aydemir","doi":"10.1109/GEC55014.2022.9987129","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to design a dual side control for a 600 W LCC resonant WPT electrical bicycle with an 85 kHz resonant frequency. Primary side control use inverter voltage and current to determine mutual inductance and load value in coils misalignment case. The secondary side control uses a DC-DC converter that has two voltage and current feedback with a PI controller to achieve CC/CV charging in the battery. Additionally, with primary side control the high-frequency inverter operates in ZVS mode. Optimal design parameters are obtained and results and control method feasibility validated by simulations.","PeriodicalId":280565,"journal":{"name":"2022 Global Energy Conference (GEC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Side Control Design for a 600W LCC Compensated Wireless Power Transfer System\",\"authors\":\"A. Pashaei, Emrullah Aydin, M. Aydemir\",\"doi\":\"10.1109/GEC55014.2022.9987129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to design a dual side control for a 600 W LCC resonant WPT electrical bicycle with an 85 kHz resonant frequency. Primary side control use inverter voltage and current to determine mutual inductance and load value in coils misalignment case. The secondary side control uses a DC-DC converter that has two voltage and current feedback with a PI controller to achieve CC/CV charging in the battery. Additionally, with primary side control the high-frequency inverter operates in ZVS mode. Optimal design parameters are obtained and results and control method feasibility validated by simulations.\",\"PeriodicalId\":280565,\"journal\":{\"name\":\"2022 Global Energy Conference (GEC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Global Energy Conference (GEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEC55014.2022.9987129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Global Energy Conference (GEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEC55014.2022.9987129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual Side Control Design for a 600W LCC Compensated Wireless Power Transfer System
The purpose of this paper is to design a dual side control for a 600 W LCC resonant WPT electrical bicycle with an 85 kHz resonant frequency. Primary side control use inverter voltage and current to determine mutual inductance and load value in coils misalignment case. The secondary side control uses a DC-DC converter that has two voltage and current feedback with a PI controller to achieve CC/CV charging in the battery. Additionally, with primary side control the high-frequency inverter operates in ZVS mode. Optimal design parameters are obtained and results and control method feasibility validated by simulations.