稀疏线性系统直接解的正向和反向代换并行算法

Anshul Gupta, Vipin Kumar
{"title":"稀疏线性系统直接解的正向和反向代换并行算法","authors":"Anshul Gupta, Vipin Kumar","doi":"10.1145/224170.224471","DOIUrl":null,"url":null,"abstract":"A few parallel algorithms for solving triangular systems resulting from parallel factorization of sparse linear systems have been proposed and implemented recently. We present a detailed analysis of parallel complexity and scalability of the best of these algorithms and the results of its implementation on up to 256 processors of the Cray T3D parallel computer. It has been a common belief that parallel sparse triangular solvers are quite unscalable due to a high communication to computation ratio. Our analysis and experiments show that, although not as scalable as the best parallel sparse Cholesky factorization algorithms, parallel sparse triangular solvers can yield reasonable speedups in runtime on hundreds of processors. We also show that for a wide class of problems, the sparse triangular solvers described in this paper are optimal and are asymptotically as scalable as a dense triangular solver.","PeriodicalId":269909,"journal":{"name":"Proceedings of the IEEE/ACM SC95 Conference","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Parallel Algorithms for Forward and Back Substitution in Direct Solution of Sparse Linear Systems\",\"authors\":\"Anshul Gupta, Vipin Kumar\",\"doi\":\"10.1145/224170.224471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A few parallel algorithms for solving triangular systems resulting from parallel factorization of sparse linear systems have been proposed and implemented recently. We present a detailed analysis of parallel complexity and scalability of the best of these algorithms and the results of its implementation on up to 256 processors of the Cray T3D parallel computer. It has been a common belief that parallel sparse triangular solvers are quite unscalable due to a high communication to computation ratio. Our analysis and experiments show that, although not as scalable as the best parallel sparse Cholesky factorization algorithms, parallel sparse triangular solvers can yield reasonable speedups in runtime on hundreds of processors. We also show that for a wide class of problems, the sparse triangular solvers described in this paper are optimal and are asymptotically as scalable as a dense triangular solver.\",\"PeriodicalId\":269909,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/224170.224471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM SC95 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224170.224471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

近年来,人们提出并实现了几种求解由稀疏线性系统并行分解而成的三角形系统的并行算法。我们详细分析了这些算法中的最佳算法的并行复杂性和可扩展性,并在多达256个处理器的Cray T3D并行计算机上实现了结果。人们普遍认为,由于并行稀疏三角形求解器的通信计算比很高,因此难以扩展。我们的分析和实验表明,尽管不像最好的并行稀疏Cholesky分解算法那样具有可扩展性,但并行稀疏三角形解算器可以在数百个处理器上的运行时产生合理的加速。我们还证明了对于一类广泛的问题,本文所描述的稀疏三角形解是最优的,并且与密集三角形解具有渐近可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Algorithms for Forward and Back Substitution in Direct Solution of Sparse Linear Systems
A few parallel algorithms for solving triangular systems resulting from parallel factorization of sparse linear systems have been proposed and implemented recently. We present a detailed analysis of parallel complexity and scalability of the best of these algorithms and the results of its implementation on up to 256 processors of the Cray T3D parallel computer. It has been a common belief that parallel sparse triangular solvers are quite unscalable due to a high communication to computation ratio. Our analysis and experiments show that, although not as scalable as the best parallel sparse Cholesky factorization algorithms, parallel sparse triangular solvers can yield reasonable speedups in runtime on hundreds of processors. We also show that for a wide class of problems, the sparse triangular solvers described in this paper are optimal and are asymptotically as scalable as a dense triangular solver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信