忽略噪音:在强化学习中使用自编码器对抗对抗性攻击(闪电演讲)

William Aiken, Hyoungshick Kim
{"title":"忽略噪音:在强化学习中使用自编码器对抗对抗性攻击(闪电演讲)","authors":"William Aiken, Hyoungshick Kim","doi":"10.1109/ICSSA45270.2018.00028","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) algorithms learn and explore nearly any state any number of times in their environment, but minute adversarial attacks cripple these agents. In this work, we define our threat model against RL agents as such: Adversarial agents introduce small permutations to the input data via black-box models with the goal of reducing the optimality of the agent. We focus on pre-processing adversarial images before they enter the network to reconstruct the ground-truth images.","PeriodicalId":223442,"journal":{"name":"2018 International Conference on Software Security and Assurance (ICSSA)","volume":"421 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ignore the Noise: Using Autoencoders against Adversarial Attacks in Reinforcement Learning (Lightning Talk)\",\"authors\":\"William Aiken, Hyoungshick Kim\",\"doi\":\"10.1109/ICSSA45270.2018.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning (RL) algorithms learn and explore nearly any state any number of times in their environment, but minute adversarial attacks cripple these agents. In this work, we define our threat model against RL agents as such: Adversarial agents introduce small permutations to the input data via black-box models with the goal of reducing the optimality of the agent. We focus on pre-processing adversarial images before they enter the network to reconstruct the ground-truth images.\",\"PeriodicalId\":223442,\"journal\":{\"name\":\"2018 International Conference on Software Security and Assurance (ICSSA)\",\"volume\":\"421 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Software Security and Assurance (ICSSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSA45270.2018.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Software Security and Assurance (ICSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSA45270.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强化学习(RL)算法在其环境中学习和探索几乎任何状态的任何次数,但微小的对抗性攻击会削弱这些代理。在这项工作中,我们将针对RL代理的威胁模型定义为:对抗性代理通过黑盒模型向输入数据引入小排列,目标是降低代理的最优性。我们专注于在对抗图像进入网络之前对其进行预处理,以重建真实图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ignore the Noise: Using Autoencoders against Adversarial Attacks in Reinforcement Learning (Lightning Talk)
Reinforcement learning (RL) algorithms learn and explore nearly any state any number of times in their environment, but minute adversarial attacks cripple these agents. In this work, we define our threat model against RL agents as such: Adversarial agents introduce small permutations to the input data via black-box models with the goal of reducing the optimality of the agent. We focus on pre-processing adversarial images before they enter the network to reconstruct the ground-truth images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信