{"title":"一种加速体绘制的Lipschitz方法","authors":"Barton T. Stander, J. Hart","doi":"10.1145/197938.197976","DOIUrl":null,"url":null,"abstract":"Interpolating discrete volume data into a continuous form adapts implicit surface techniques for rendering volumetric iso-surfaces. One such algorithm uses the Lipschitz condition to create an octree representation that accelerates volume rendering. Furthermore, only one preprocessing step is needed to create the Lipschitzoctree representation that accelerates rendering of isosurfaces for any threshold value.","PeriodicalId":124559,"journal":{"name":"Symposium on Volume Visualization","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"A Lipschitz method for accelerated volume rendering\",\"authors\":\"Barton T. Stander, J. Hart\",\"doi\":\"10.1145/197938.197976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interpolating discrete volume data into a continuous form adapts implicit surface techniques for rendering volumetric iso-surfaces. One such algorithm uses the Lipschitz condition to create an octree representation that accelerates volume rendering. Furthermore, only one preprocessing step is needed to create the Lipschitzoctree representation that accelerates rendering of isosurfaces for any threshold value.\",\"PeriodicalId\":124559,\"journal\":{\"name\":\"Symposium on Volume Visualization\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Volume Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/197938.197976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Volume Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/197938.197976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lipschitz method for accelerated volume rendering
Interpolating discrete volume data into a continuous form adapts implicit surface techniques for rendering volumetric iso-surfaces. One such algorithm uses the Lipschitz condition to create an octree representation that accelerates volume rendering. Furthermore, only one preprocessing step is needed to create the Lipschitzoctree representation that accelerates rendering of isosurfaces for any threshold value.