自动释义获取标题的聚类与匹配

S. Wubben, Antal van den Bosch, E. Krahmer, E. Marsi
{"title":"自动释义获取标题的聚类与匹配","authors":"S. Wubben, Antal van den Bosch, E. Krahmer, E. Marsi","doi":"10.3115/1610195.1610216","DOIUrl":null,"url":null,"abstract":"For developing a data-driven text rewriting algorithm for paraphrasing, it is essential to have a monolingual corpus of aligned paraphrased sentences. News article headlines are a rich source of paraphrases; they tend to describe the same event in various different ways, and can easily be obtained from the web. We compare two methods of aligning headlines to construct such an aligned corpus of paraphrases, one based on clustering, and the other on pairwise similarity-based matching. We show that the latter performs best on the task of aligning paraphrastic headlines.","PeriodicalId":307841,"journal":{"name":"European Workshop on Natural Language Generation","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Clustering and Matching Headlines for Automatic Paraphrase Acquisition\",\"authors\":\"S. Wubben, Antal van den Bosch, E. Krahmer, E. Marsi\",\"doi\":\"10.3115/1610195.1610216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For developing a data-driven text rewriting algorithm for paraphrasing, it is essential to have a monolingual corpus of aligned paraphrased sentences. News article headlines are a rich source of paraphrases; they tend to describe the same event in various different ways, and can easily be obtained from the web. We compare two methods of aligning headlines to construct such an aligned corpus of paraphrases, one based on clustering, and the other on pairwise similarity-based matching. We show that the latter performs best on the task of aligning paraphrastic headlines.\",\"PeriodicalId\":307841,\"journal\":{\"name\":\"European Workshop on Natural Language Generation\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Workshop on Natural Language Generation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1610195.1610216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Natural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1610195.1610216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

为了开发用于意译的数据驱动文本重写算法,必须有一个对齐的意译句子的单语语料库。新闻标题是释义的丰富来源;他们倾向于用各种不同的方式描述同一事件,并且可以很容易地从网络上获得。我们比较了两种对齐标题的方法来构建这样一个对齐的释义语料库,一种是基于聚类的,另一种是基于两两相似度的匹配。我们表明,后者在调整释义标题的任务上表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering and Matching Headlines for Automatic Paraphrase Acquisition
For developing a data-driven text rewriting algorithm for paraphrasing, it is essential to have a monolingual corpus of aligned paraphrased sentences. News article headlines are a rich source of paraphrases; they tend to describe the same event in various different ways, and can easily be obtained from the web. We compare two methods of aligning headlines to construct such an aligned corpus of paraphrases, one based on clustering, and the other on pairwise similarity-based matching. We show that the latter performs best on the task of aligning paraphrastic headlines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信