{"title":"基于网络流量分析的k-means与小批量k-means聚类算法在android恶意软件检测中的比较研究","authors":"Ali Feizollah, N. B. Anuar, R. Salleh, F. Amalina","doi":"10.1109/ISBAST.2014.7013120","DOIUrl":null,"url":null,"abstract":"This paper evaluates performance of two clustering algorithms, namely k-means and mini batch k-means, in the Android malware detection. Network traffic generated by the Android applications, normal and malicious, is analyzed for detection purpose. We have used MalGenome data sample for this work to build the dataset. We chose 800 samples out of 1260 Android malware samples. In addition, we collected numerous normal applications from the official Android market. The results show that mini batch k-means algorithm performs better than k-means algorithm in the Android malware detection.","PeriodicalId":292333,"journal":{"name":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Comparative study of k-means and mini batch k-means clustering algorithms in android malware detection using network traffic analysis\",\"authors\":\"Ali Feizollah, N. B. Anuar, R. Salleh, F. Amalina\",\"doi\":\"10.1109/ISBAST.2014.7013120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates performance of two clustering algorithms, namely k-means and mini batch k-means, in the Android malware detection. Network traffic generated by the Android applications, normal and malicious, is analyzed for detection purpose. We have used MalGenome data sample for this work to build the dataset. We chose 800 samples out of 1260 Android malware samples. In addition, we collected numerous normal applications from the official Android market. The results show that mini batch k-means algorithm performs better than k-means algorithm in the Android malware detection.\",\"PeriodicalId\":292333,\"journal\":{\"name\":\"2014 International Symposium on Biometrics and Security Technologies (ISBAST)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Symposium on Biometrics and Security Technologies (ISBAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBAST.2014.7013120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBAST.2014.7013120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative study of k-means and mini batch k-means clustering algorithms in android malware detection using network traffic analysis
This paper evaluates performance of two clustering algorithms, namely k-means and mini batch k-means, in the Android malware detection. Network traffic generated by the Android applications, normal and malicious, is analyzed for detection purpose. We have used MalGenome data sample for this work to build the dataset. We chose 800 samples out of 1260 Android malware samples. In addition, we collected numerous normal applications from the official Android market. The results show that mini batch k-means algorithm performs better than k-means algorithm in the Android malware detection.