基于前哨时间序列NDVI的小麦作物分类——以萨哈兰普尔地区为例

Saurabh Pargaien, R. Prakash, V. P. Dubey
{"title":"基于前哨时间序列NDVI的小麦作物分类——以萨哈兰普尔地区为例","authors":"Saurabh Pargaien, R. Prakash, V. P. Dubey","doi":"10.1109/CCGE50943.2021.9776445","DOIUrl":null,"url":null,"abstract":"The NDVI is an extensively used numerical indicator that utilizes the NIR and red band of the EM spectrum. It is waged to analyse and evaluate the ground locations for the presence of live green vegetation by using remote sensing images. This paper provides an analysis of the utility of NDVI in mapping the wheat crop of selected area of Saharanpur region, Uttar Pradesh, India. Images of Sentinel 2B were collected from November 16, 2018 to April 15, 2019. A total of 16 different date satellite images were analysed to calculate NDVI values of same region. For land cover classification various indices are used. Vegetation, sparse vegetation and dense vegetation can be identified by computing NDVI. In this article 16 different sentinel images of Saharanpur region are processed to identify the wheat crop on the basis of NDVI values. the graph shows high NDVI values in the month of march.","PeriodicalId":130452,"journal":{"name":"2021 International Conference on Computing, Communication and Green Engineering (CCGE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wheat Crop Classification based on NDVI using Sentinel Time Series: A Case Study Saharanpur Region\",\"authors\":\"Saurabh Pargaien, R. Prakash, V. P. Dubey\",\"doi\":\"10.1109/CCGE50943.2021.9776445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The NDVI is an extensively used numerical indicator that utilizes the NIR and red band of the EM spectrum. It is waged to analyse and evaluate the ground locations for the presence of live green vegetation by using remote sensing images. This paper provides an analysis of the utility of NDVI in mapping the wheat crop of selected area of Saharanpur region, Uttar Pradesh, India. Images of Sentinel 2B were collected from November 16, 2018 to April 15, 2019. A total of 16 different date satellite images were analysed to calculate NDVI values of same region. For land cover classification various indices are used. Vegetation, sparse vegetation and dense vegetation can be identified by computing NDVI. In this article 16 different sentinel images of Saharanpur region are processed to identify the wheat crop on the basis of NDVI values. the graph shows high NDVI values in the month of march.\",\"PeriodicalId\":130452,\"journal\":{\"name\":\"2021 International Conference on Computing, Communication and Green Engineering (CCGE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computing, Communication and Green Engineering (CCGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGE50943.2021.9776445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computing, Communication and Green Engineering (CCGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGE50943.2021.9776445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

NDVI是一种广泛使用的数字指标,它利用了EM光谱的近红外和红色波段。利用遥感图像分析和评价存在活的绿色植被的地面位置。本文分析了NDVI在印度北方邦萨哈兰普尔地区选定地区小麦作物分布图中的应用。哨兵2B的图像于2018年11月16日至2019年4月15日收集。分析了16幅不同日期的卫星图像,计算了同一地区的NDVI值。土地覆盖分类采用了多种指标。通过计算NDVI可以识别植被、稀疏植被和茂密植被。本文对萨哈兰普尔地区16幅不同的哨兵图像进行处理,以NDVI值为基础识别小麦作物。该图显示3月份NDVI值较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wheat Crop Classification based on NDVI using Sentinel Time Series: A Case Study Saharanpur Region
The NDVI is an extensively used numerical indicator that utilizes the NIR and red band of the EM spectrum. It is waged to analyse and evaluate the ground locations for the presence of live green vegetation by using remote sensing images. This paper provides an analysis of the utility of NDVI in mapping the wheat crop of selected area of Saharanpur region, Uttar Pradesh, India. Images of Sentinel 2B were collected from November 16, 2018 to April 15, 2019. A total of 16 different date satellite images were analysed to calculate NDVI values of same region. For land cover classification various indices are used. Vegetation, sparse vegetation and dense vegetation can be identified by computing NDVI. In this article 16 different sentinel images of Saharanpur region are processed to identify the wheat crop on the basis of NDVI values. the graph shows high NDVI values in the month of march.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信