{"title":"利用矩量法研究气隙和有限地平面对探针馈电矩形介质谐振器天线辐射特性的影响","authors":"R.M. Baghaee, M. H. Neshati, J. R. Mohassel","doi":"10.1109/RWS.2006.1615182","DOIUrl":null,"url":null,"abstract":"The rigorous moment method analysis of probe-fed rectangular dielectric resonator antenna on a finite ground plane is presented. We modeled the exact structure of coaxial cable and antenna. The antenna, coaxial cable and ground plane are modeled as surface electric currents, but the dielectric resonator and internal dielectric of coaxial cable are assumed as a volume polarization current. The dielectric resonator (DR) is treated via a set of combined field integral equations. The associated coupling is then formulated with sets of integral equations. The coupled integral equations are solved by the method of moments (MoM). The effects of air gap and finite ground plane on resonance frequency, input impedance, E-plane and H-plane patterns and moment current of the objects are presented. Finally, we demonstrate some important conceptual issues for designing and analyzing of RDRA in communication circuits such as mobile systems, IF-amplifiers and phase detection. Our methods and results obtained from the MoM have a very good agreement with measurements and are higher accurate and fast than simulated results with the other softwares.","PeriodicalId":244560,"journal":{"name":"2006 IEEE Radio and Wireless Symposium","volume":"69 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The effects of air gap and finite ground plane on radiation characteristics of probe-fed rectangular dielectric resonator antennas using method of moment\",\"authors\":\"R.M. Baghaee, M. H. Neshati, J. R. Mohassel\",\"doi\":\"10.1109/RWS.2006.1615182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rigorous moment method analysis of probe-fed rectangular dielectric resonator antenna on a finite ground plane is presented. We modeled the exact structure of coaxial cable and antenna. The antenna, coaxial cable and ground plane are modeled as surface electric currents, but the dielectric resonator and internal dielectric of coaxial cable are assumed as a volume polarization current. The dielectric resonator (DR) is treated via a set of combined field integral equations. The associated coupling is then formulated with sets of integral equations. The coupled integral equations are solved by the method of moments (MoM). The effects of air gap and finite ground plane on resonance frequency, input impedance, E-plane and H-plane patterns and moment current of the objects are presented. Finally, we demonstrate some important conceptual issues for designing and analyzing of RDRA in communication circuits such as mobile systems, IF-amplifiers and phase detection. Our methods and results obtained from the MoM have a very good agreement with measurements and are higher accurate and fast than simulated results with the other softwares.\",\"PeriodicalId\":244560,\"journal\":{\"name\":\"2006 IEEE Radio and Wireless Symposium\",\"volume\":\"69 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Radio and Wireless Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS.2006.1615182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Radio and Wireless Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2006.1615182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effects of air gap and finite ground plane on radiation characteristics of probe-fed rectangular dielectric resonator antennas using method of moment
The rigorous moment method analysis of probe-fed rectangular dielectric resonator antenna on a finite ground plane is presented. We modeled the exact structure of coaxial cable and antenna. The antenna, coaxial cable and ground plane are modeled as surface electric currents, but the dielectric resonator and internal dielectric of coaxial cable are assumed as a volume polarization current. The dielectric resonator (DR) is treated via a set of combined field integral equations. The associated coupling is then formulated with sets of integral equations. The coupled integral equations are solved by the method of moments (MoM). The effects of air gap and finite ground plane on resonance frequency, input impedance, E-plane and H-plane patterns and moment current of the objects are presented. Finally, we demonstrate some important conceptual issues for designing and analyzing of RDRA in communication circuits such as mobile systems, IF-amplifiers and phase detection. Our methods and results obtained from the MoM have a very good agreement with measurements and are higher accurate and fast than simulated results with the other softwares.