基于k -means++算法的用电量聚类

Muchammad Dicky Sanjaya, C. Setianingsih, R. E. Saputra
{"title":"基于k -means++算法的用电量聚类","authors":"Muchammad Dicky Sanjaya, C. Setianingsih, R. E. Saputra","doi":"10.1109/IAICT52856.2021.9532534","DOIUrl":null,"url":null,"abstract":"Global electricity consumption is increasing every year. Electricity has become a necessary need for every sector, from a household to government and industry. With today's technology, data also has become more important, including electricity data. The right tools and techniques can extract valuable information from data. Using a K-Means++ algorithm to cluster electricity data can help to determine when the usage is low, moderate, and high. In this study, there three scenarios of clustering; hourly, daily, and monthly. The silhouette score of this experiment ranges from 0.68 to 0.71, and the DB Index ranges from 0.30 to 0.51.","PeriodicalId":416542,"journal":{"name":"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electricity Usage Clustering with K-means++ Algorithm\",\"authors\":\"Muchammad Dicky Sanjaya, C. Setianingsih, R. E. Saputra\",\"doi\":\"10.1109/IAICT52856.2021.9532534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global electricity consumption is increasing every year. Electricity has become a necessary need for every sector, from a household to government and industry. With today's technology, data also has become more important, including electricity data. The right tools and techniques can extract valuable information from data. Using a K-Means++ algorithm to cluster electricity data can help to determine when the usage is low, moderate, and high. In this study, there three scenarios of clustering; hourly, daily, and monthly. The silhouette score of this experiment ranges from 0.68 to 0.71, and the DB Index ranges from 0.30 to 0.51.\",\"PeriodicalId\":416542,\"journal\":{\"name\":\"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT52856.2021.9532534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT52856.2021.9532534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球用电量每年都在增加。从家庭到政府和工业,电力已经成为每个部门的必要需求。随着今天的技术,数据也变得越来越重要,包括电力数据。正确的工具和技术可以从数据中提取有价值的信息。使用k - means++算法对电力数据进行聚类可以帮助确定用电量低、中等和高的时间段。在本研究中,聚类有三种场景;每小时、每天和每月。本实验的廓形评分范围为0.68 ~ 0.71,DB指数范围为0.30 ~ 0.51。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electricity Usage Clustering with K-means++ Algorithm
Global electricity consumption is increasing every year. Electricity has become a necessary need for every sector, from a household to government and industry. With today's technology, data also has become more important, including electricity data. The right tools and techniques can extract valuable information from data. Using a K-Means++ algorithm to cluster electricity data can help to determine when the usage is low, moderate, and high. In this study, there three scenarios of clustering; hourly, daily, and monthly. The silhouette score of this experiment ranges from 0.68 to 0.71, and the DB Index ranges from 0.30 to 0.51.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信