基于软模态内结构约束的基于内容的视频音乐检索

Sungeun Hong, Woobin Im, H. Yang
{"title":"基于软模态内结构约束的基于内容的视频音乐检索","authors":"Sungeun Hong, Woobin Im, H. Yang","doi":"10.1145/3206025.3206046","DOIUrl":null,"url":null,"abstract":"Up to now, only limited research has been conducted on crossmodal retrieval of suitable music for a specified video or vice versa. Moreover, much of the existing research relies on metadata such as keywords, tags, or description that must be individually produced and attached posterior. This paper introduces a new content-based, cross-modal retrieval method for video and music that is implemented through deep neural networks. We train the network via inter-modal ranking loss such that videos and music with similar semantics end up close together in the embedding space. However, if only the inter-modal ranking constraint is used for embedding, modality-specific characteristics can be lost. To address this problem, we propose a novel soft intra-modal structure loss that leverages the relative distance relationship between intra-modal samples before embedding. We also introduce reasonable quantitative and qualitative experimental protocols to solve the lack of standard protocols for less-mature video-music related tasks. All the datasets and source code can be found in our online repository (https://github.com/csehong/VM-NET).","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"CBVMR: Content-Based Video-Music Retrieval Using Soft Intra-Modal Structure Constraint\",\"authors\":\"Sungeun Hong, Woobin Im, H. Yang\",\"doi\":\"10.1145/3206025.3206046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Up to now, only limited research has been conducted on crossmodal retrieval of suitable music for a specified video or vice versa. Moreover, much of the existing research relies on metadata such as keywords, tags, or description that must be individually produced and attached posterior. This paper introduces a new content-based, cross-modal retrieval method for video and music that is implemented through deep neural networks. We train the network via inter-modal ranking loss such that videos and music with similar semantics end up close together in the embedding space. However, if only the inter-modal ranking constraint is used for embedding, modality-specific characteristics can be lost. To address this problem, we propose a novel soft intra-modal structure loss that leverages the relative distance relationship between intra-modal samples before embedding. We also introduce reasonable quantitative and qualitative experimental protocols to solve the lack of standard protocols for less-mature video-music related tasks. All the datasets and source code can be found in our online repository (https://github.com/csehong/VM-NET).\",\"PeriodicalId\":224132,\"journal\":{\"name\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206025.3206046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

到目前为止,对于跨模式检索特定视频的合适音乐或相反的音乐的研究非常有限。此外,许多现有的研究依赖于元数据,如关键词、标签或描述,这些必须单独产生并后附。本文介绍了一种新的基于内容的跨模态视频和音乐检索方法,该方法通过深度神经网络实现。我们通过模式间排序损失来训练网络,使得具有相似语义的视频和音乐最终在嵌入空间中靠近在一起。然而,如果只使用模态间排序约束进行嵌入,则可能丢失特定于模态的特征。为了解决这个问题,我们提出了一种新的软模态内结构损失,它在嵌入前利用了模态内样本之间的相对距离关系。我们还引入了合理的定量和定性实验协议,以解决视频音乐相关任务缺乏标准协议的问题。所有的数据集和源代码都可以在我们的在线存储库(https://github.com/csehong/VM-NET)中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CBVMR: Content-Based Video-Music Retrieval Using Soft Intra-Modal Structure Constraint
Up to now, only limited research has been conducted on crossmodal retrieval of suitable music for a specified video or vice versa. Moreover, much of the existing research relies on metadata such as keywords, tags, or description that must be individually produced and attached posterior. This paper introduces a new content-based, cross-modal retrieval method for video and music that is implemented through deep neural networks. We train the network via inter-modal ranking loss such that videos and music with similar semantics end up close together in the embedding space. However, if only the inter-modal ranking constraint is used for embedding, modality-specific characteristics can be lost. To address this problem, we propose a novel soft intra-modal structure loss that leverages the relative distance relationship between intra-modal samples before embedding. We also introduce reasonable quantitative and qualitative experimental protocols to solve the lack of standard protocols for less-mature video-music related tasks. All the datasets and source code can be found in our online repository (https://github.com/csehong/VM-NET).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信