卷积神经网络中FPGA乘法器的高效利用

M. A. Boulasikis, M. Birbas, N. Tsafas, Nikos Kanakaris
{"title":"卷积神经网络中FPGA乘法器的高效利用","authors":"M. A. Boulasikis, M. Birbas, N. Tsafas, Nikos Kanakaris","doi":"10.1109/MOCAST52088.2021.9493366","DOIUrl":null,"url":null,"abstract":"Recent advances in the field of computer vision create the demand for larger and more complex architectures for Deep Convolutional Neural Networks (CNNs). As a result, computation time and memory usage become the main bottleneck in applied deep network inference, particularly in Embedded Systems implementations. Parameter quantization is often employed in these cases to minimize the detrimental effect of the aforementioned bottlenecks. In this paper, low level hardware optimizations on fixed point convolution are considered. Emphasis is given on the utilization of Digital Signal Processing Units (DSPs) as dual multipliers and on practical considerations. Three—by— three convolution kernels are formulated based on this research and are measured as case studies. The experiments show that the proper exploitation of dual multipliers can offer significant benefits to the system.","PeriodicalId":146990,"journal":{"name":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Utilization of FPGA Multipliers for Convolutional Neural Networks\",\"authors\":\"M. A. Boulasikis, M. Birbas, N. Tsafas, Nikos Kanakaris\",\"doi\":\"10.1109/MOCAST52088.2021.9493366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in the field of computer vision create the demand for larger and more complex architectures for Deep Convolutional Neural Networks (CNNs). As a result, computation time and memory usage become the main bottleneck in applied deep network inference, particularly in Embedded Systems implementations. Parameter quantization is often employed in these cases to minimize the detrimental effect of the aforementioned bottlenecks. In this paper, low level hardware optimizations on fixed point convolution are considered. Emphasis is given on the utilization of Digital Signal Processing Units (DSPs) as dual multipliers and on practical considerations. Three—by— three convolution kernels are formulated based on this research and are measured as case studies. The experiments show that the proper exploitation of dual multipliers can offer significant benefits to the system.\",\"PeriodicalId\":146990,\"journal\":{\"name\":\"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOCAST52088.2021.9493366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST52088.2021.9493366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计算机视觉领域的最新进展为深度卷积神经网络(cnn)创造了更大、更复杂的架构需求。因此,计算时间和内存使用成为应用深度网络推理的主要瓶颈,特别是在嵌入式系统实现中。在这些情况下,通常采用参数量化来最小化上述瓶颈的有害影响。本文考虑了不动点卷积的底层硬件优化。重点是数字信号处理单元(dsp)作为双乘法器的使用和实际考虑。在此基础上建立了三乘三卷积核,并作为实例进行了测量。实验表明,适当地利用对偶乘数可以为系统带来显着的效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Utilization of FPGA Multipliers for Convolutional Neural Networks
Recent advances in the field of computer vision create the demand for larger and more complex architectures for Deep Convolutional Neural Networks (CNNs). As a result, computation time and memory usage become the main bottleneck in applied deep network inference, particularly in Embedded Systems implementations. Parameter quantization is often employed in these cases to minimize the detrimental effect of the aforementioned bottlenecks. In this paper, low level hardware optimizations on fixed point convolution are considered. Emphasis is given on the utilization of Digital Signal Processing Units (DSPs) as dual multipliers and on practical considerations. Three—by— three convolution kernels are formulated based on this research and are measured as case studies. The experiments show that the proper exploitation of dual multipliers can offer significant benefits to the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信