基于svm的人脸识别判别分析

Sangki Kim, K. Toh, Sangyoun Lee
{"title":"基于svm的人脸识别判别分析","authors":"Sangki Kim, K. Toh, Sangyoun Lee","doi":"10.1109/ICIEA.2008.4582892","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel variant of Linear Discriminant Analysis (LDA) for face recognition. The proposed method attempts to find an optimal LDA matrix by redesigning the between-class scatter matrix incorporating a Support Vector Machine (SVM). Our empirical evaluations show that the proposed method offers noticeable performance improvement over the conventional LDA.","PeriodicalId":309894,"journal":{"name":"2008 3rd IEEE Conference on Industrial Electronics and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SVM-based Discriminant Analysis for face recognition\",\"authors\":\"Sangki Kim, K. Toh, Sangyoun Lee\",\"doi\":\"10.1109/ICIEA.2008.4582892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel variant of Linear Discriminant Analysis (LDA) for face recognition. The proposed method attempts to find an optimal LDA matrix by redesigning the between-class scatter matrix incorporating a Support Vector Machine (SVM). Our empirical evaluations show that the proposed method offers noticeable performance improvement over the conventional LDA.\",\"PeriodicalId\":309894,\"journal\":{\"name\":\"2008 3rd IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2008.4582892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2008.4582892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了一种新的线性判别分析(LDA)用于人脸识别。该方法尝试通过结合支持向量机(SVM)重新设计类间散点矩阵来找到最优LDA矩阵。我们的实证评估表明,所提出的方法比传统的LDA有明显的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SVM-based Discriminant Analysis for face recognition
In this paper, we introduce a novel variant of Linear Discriminant Analysis (LDA) for face recognition. The proposed method attempts to find an optimal LDA matrix by redesigning the between-class scatter matrix incorporating a Support Vector Machine (SVM). Our empirical evaluations show that the proposed method offers noticeable performance improvement over the conventional LDA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信