Luís Mesquita, Gabriela Amorim, B. Dutra, A. Silveira
{"title":"通过极限学习机对手臂和前臂运动意图的神经分类器","authors":"Luís Mesquita, Gabriela Amorim, B. Dutra, A. Silveira","doi":"10.17648/sbai-2019-111106","DOIUrl":null,"url":null,"abstract":": The myoelectric signals are electrical potentials that represent the dynamics of muscle contrac-tion and its study has shown to be relevant in applications in physiotherapy and rehabilitation engine for the improvement of the quality of life of amputated individuals or with some type of motor deficiency. The article proposes a neural classifier that consists of two feedforward neural networks in parallel, con-structed with the aid of the MATLAB ® computational tool to identify the movement of the arm and fore-arm, being able to be used as a command source for myoelectric prostheses and robotic arms. Numerical simulations from real data prove the efficacy of the developed neural classifier. a partir de dados reais comprovam a efi-cácia do classificador desenvolvido.","PeriodicalId":130927,"journal":{"name":"Anais do 14º Simpósio Brasileiro de Automação Inteligente","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classificador Neural para Intenção de Movimento do Braço e Antebraço via Extreme Learning Machine\",\"authors\":\"Luís Mesquita, Gabriela Amorim, B. Dutra, A. Silveira\",\"doi\":\"10.17648/sbai-2019-111106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The myoelectric signals are electrical potentials that represent the dynamics of muscle contrac-tion and its study has shown to be relevant in applications in physiotherapy and rehabilitation engine for the improvement of the quality of life of amputated individuals or with some type of motor deficiency. The article proposes a neural classifier that consists of two feedforward neural networks in parallel, con-structed with the aid of the MATLAB ® computational tool to identify the movement of the arm and fore-arm, being able to be used as a command source for myoelectric prostheses and robotic arms. Numerical simulations from real data prove the efficacy of the developed neural classifier. a partir de dados reais comprovam a efi-cácia do classificador desenvolvido.\",\"PeriodicalId\":130927,\"journal\":{\"name\":\"Anais do 14º Simpósio Brasileiro de Automação Inteligente\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do 14º Simpósio Brasileiro de Automação Inteligente\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17648/sbai-2019-111106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do 14º Simpósio Brasileiro de Automação Inteligente","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17648/sbai-2019-111106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
肌电信号是代表肌肉收缩动力学的电位,其研究表明在物理治疗和康复引擎中有相关的应用,以改善截肢者或某些类型的运动缺陷者的生活质量。本文提出了一种神经分类器,该分类器由两个前馈神经网络并行组成,借助MATLAB®计算工具构建,用于识别手臂和前臂的运动,可作为肌电假体和机械臂的指令源。实际数据的数值仿真证明了所开发的神经分类器的有效性。一个partipartide dados reais comprovam . efi-cácia do classificador desenvolvideo。
Classificador Neural para Intenção de Movimento do Braço e Antebraço via Extreme Learning Machine
: The myoelectric signals are electrical potentials that represent the dynamics of muscle contrac-tion and its study has shown to be relevant in applications in physiotherapy and rehabilitation engine for the improvement of the quality of life of amputated individuals or with some type of motor deficiency. The article proposes a neural classifier that consists of two feedforward neural networks in parallel, con-structed with the aid of the MATLAB ® computational tool to identify the movement of the arm and fore-arm, being able to be used as a command source for myoelectric prostheses and robotic arms. Numerical simulations from real data prove the efficacy of the developed neural classifier. a partir de dados reais comprovam a efi-cácia do classificador desenvolvido.