通过极限学习机对手臂和前臂运动意图的神经分类器

Luís Mesquita, Gabriela Amorim, B. Dutra, A. Silveira
{"title":"通过极限学习机对手臂和前臂运动意图的神经分类器","authors":"Luís Mesquita, Gabriela Amorim, B. Dutra, A. Silveira","doi":"10.17648/sbai-2019-111106","DOIUrl":null,"url":null,"abstract":": The myoelectric signals are electrical potentials that represent the dynamics of muscle contrac-tion and its study has shown to be relevant in applications in physiotherapy and rehabilitation engine for the improvement of the quality of life of amputated individuals or with some type of motor deficiency. The article proposes a neural classifier that consists of two feedforward neural networks in parallel, con-structed with the aid of the MATLAB ® computational tool to identify the movement of the arm and fore-arm, being able to be used as a command source for myoelectric prostheses and robotic arms. Numerical simulations from real data prove the efficacy of the developed neural classifier. a partir de dados reais comprovam a efi-cácia do classificador desenvolvido.","PeriodicalId":130927,"journal":{"name":"Anais do 14º Simpósio Brasileiro de Automação Inteligente","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classificador Neural para Intenção de Movimento do Braço e Antebraço via Extreme Learning Machine\",\"authors\":\"Luís Mesquita, Gabriela Amorim, B. Dutra, A. Silveira\",\"doi\":\"10.17648/sbai-2019-111106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The myoelectric signals are electrical potentials that represent the dynamics of muscle contrac-tion and its study has shown to be relevant in applications in physiotherapy and rehabilitation engine for the improvement of the quality of life of amputated individuals or with some type of motor deficiency. The article proposes a neural classifier that consists of two feedforward neural networks in parallel, con-structed with the aid of the MATLAB ® computational tool to identify the movement of the arm and fore-arm, being able to be used as a command source for myoelectric prostheses and robotic arms. Numerical simulations from real data prove the efficacy of the developed neural classifier. a partir de dados reais comprovam a efi-cácia do classificador desenvolvido.\",\"PeriodicalId\":130927,\"journal\":{\"name\":\"Anais do 14º Simpósio Brasileiro de Automação Inteligente\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do 14º Simpósio Brasileiro de Automação Inteligente\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17648/sbai-2019-111106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do 14º Simpósio Brasileiro de Automação Inteligente","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17648/sbai-2019-111106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肌电信号是代表肌肉收缩动力学的电位,其研究表明在物理治疗和康复引擎中有相关的应用,以改善截肢者或某些类型的运动缺陷者的生活质量。本文提出了一种神经分类器,该分类器由两个前馈神经网络并行组成,借助MATLAB®计算工具构建,用于识别手臂和前臂的运动,可作为肌电假体和机械臂的指令源。实际数据的数值仿真证明了所开发的神经分类器的有效性。一个partipartide dados reais comprovam . efi-cácia do classificador desenvolvideo。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classificador Neural para Intenção de Movimento do Braço e Antebraço via Extreme Learning Machine
: The myoelectric signals are electrical potentials that represent the dynamics of muscle contrac-tion and its study has shown to be relevant in applications in physiotherapy and rehabilitation engine for the improvement of the quality of life of amputated individuals or with some type of motor deficiency. The article proposes a neural classifier that consists of two feedforward neural networks in parallel, con-structed with the aid of the MATLAB ® computational tool to identify the movement of the arm and fore-arm, being able to be used as a command source for myoelectric prostheses and robotic arms. Numerical simulations from real data prove the efficacy of the developed neural classifier. a partir de dados reais comprovam a efi-cácia do classificador desenvolvido.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信