确定神经网络结构的聚类距离度量的比较研究

Mohamed Lafif Tej, S. Holban
{"title":"确定神经网络结构的聚类距离度量的比较研究","authors":"Mohamed Lafif Tej, S. Holban","doi":"10.1109/SACI.2018.8440987","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study of clustering distance measures to determine the architecture of a neural network. A number of different Distance Measures have been proposed to measure ‘distance’ for the cluster analysis, which will be applied on the dataset used to train the neural network. The goal of this study is to select the optimal number of clusters which depends on the best choice of clustering distance measure because the results of cluster analysis are used to determine the number of hidden layers and the number of hidden neurons. A particular criterion presented in this paper to link between the number of cluster obtained and the number of hidden layers of a neural network.","PeriodicalId":126087,"journal":{"name":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Study of Clustering Distance Measures to Determine Neural Network Architectures\",\"authors\":\"Mohamed Lafif Tej, S. Holban\",\"doi\":\"10.1109/SACI.2018.8440987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative study of clustering distance measures to determine the architecture of a neural network. A number of different Distance Measures have been proposed to measure ‘distance’ for the cluster analysis, which will be applied on the dataset used to train the neural network. The goal of this study is to select the optimal number of clusters which depends on the best choice of clustering distance measure because the results of cluster analysis are used to determine the number of hidden layers and the number of hidden neurons. A particular criterion presented in this paper to link between the number of cluster obtained and the number of hidden layers of a neural network.\",\"PeriodicalId\":126087,\"journal\":{\"name\":\"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2018.8440987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2018.8440987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对确定神经网络结构的聚类距离测度进行了比较研究。已经提出了许多不同的距离度量来测量聚类分析的“距离”,这将应用于用于训练神经网络的数据集。本研究的目标是选择最优的聚类数量,这取决于聚类距离度量的最佳选择,因为聚类分析的结果用于确定隐藏层的数量和隐藏神经元的数量。本文提出了一种特殊的准则,将得到的聚类数与神经网络的隐藏层数联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study of Clustering Distance Measures to Determine Neural Network Architectures
This paper presents a comparative study of clustering distance measures to determine the architecture of a neural network. A number of different Distance Measures have been proposed to measure ‘distance’ for the cluster analysis, which will be applied on the dataset used to train the neural network. The goal of this study is to select the optimal number of clusters which depends on the best choice of clustering distance measure because the results of cluster analysis are used to determine the number of hidden layers and the number of hidden neurons. A particular criterion presented in this paper to link between the number of cluster obtained and the number of hidden layers of a neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信