基于rbm的光伏阵列双电平线路故障自动特征提取模型

Amir Nedaei, A. Eskandari, J. Milimonfared, B. Dimd, U. Cali, M. Aghaei
{"title":"基于rbm的光伏阵列双电平线路故障自动特征提取模型","authors":"Amir Nedaei, A. Eskandari, J. Milimonfared, B. Dimd, U. Cali, M. Aghaei","doi":"10.1109/FES57669.2023.10183027","DOIUrl":null,"url":null,"abstract":"Line-Line (LL) faults in PV arrays are usually very difficult to detect due to the production of insufficient fault current under severe conditions such as low mismatch levels and high fault impedances. This paper proposes a very accurate bi-level model to detect and classify LL faults in PV arrays. The model is based on automatic feature extraction using Restricted Boltzmann Machine (RBM) which is respectively combined with a multi-class Support Vector Machine (SVM) classifier and a Random Forest (RF) algorithm in each level. The simulation results show that the proposed model can yield an accuracy of 100% when detecting and classifying various kinds of LL faults.","PeriodicalId":165790,"journal":{"name":"2023 International Conference on Future Energy Solutions (FES)","volume":"67 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bi-Level Line-Line Fault Detection Model for Photovoltaic Arrays Using RBM-Based Automatic Feature Extraction\",\"authors\":\"Amir Nedaei, A. Eskandari, J. Milimonfared, B. Dimd, U. Cali, M. Aghaei\",\"doi\":\"10.1109/FES57669.2023.10183027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Line-Line (LL) faults in PV arrays are usually very difficult to detect due to the production of insufficient fault current under severe conditions such as low mismatch levels and high fault impedances. This paper proposes a very accurate bi-level model to detect and classify LL faults in PV arrays. The model is based on automatic feature extraction using Restricted Boltzmann Machine (RBM) which is respectively combined with a multi-class Support Vector Machine (SVM) classifier and a Random Forest (RF) algorithm in each level. The simulation results show that the proposed model can yield an accuracy of 100% when detecting and classifying various kinds of LL faults.\",\"PeriodicalId\":165790,\"journal\":{\"name\":\"2023 International Conference on Future Energy Solutions (FES)\",\"volume\":\"67 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Future Energy Solutions (FES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FES57669.2023.10183027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Future Energy Solutions (FES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FES57669.2023.10183027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于在低错配水平和高故障阻抗等恶劣条件下产生的故障电流不足,光伏阵列中的Line-Line (LL)故障通常很难检测到。本文提出了一种非常精确的双层模型来检测和分类光伏阵列中的LL故障。该模型基于受限玻尔兹曼机(RBM)的自动特征提取,在每一级分别结合多类支持向量机(SVM)分类器和随机森林(RF)算法。仿真结果表明,该模型在检测和分类各种LL故障时,准确率达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bi-Level Line-Line Fault Detection Model for Photovoltaic Arrays Using RBM-Based Automatic Feature Extraction
Line-Line (LL) faults in PV arrays are usually very difficult to detect due to the production of insufficient fault current under severe conditions such as low mismatch levels and high fault impedances. This paper proposes a very accurate bi-level model to detect and classify LL faults in PV arrays. The model is based on automatic feature extraction using Restricted Boltzmann Machine (RBM) which is respectively combined with a multi-class Support Vector Machine (SVM) classifier and a Random Forest (RF) algorithm in each level. The simulation results show that the proposed model can yield an accuracy of 100% when detecting and classifying various kinds of LL faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信